D. There are two phosphate ions in a molecule of magnesium phosphate
At point E
- the kinetic energy of the rollercoaster is small compared to the potential energy
- the potential energy is greater than the kinetic energy
- the total energy is a mixture of potential and kinetic energy
<h3>What is the energy of the roller coaster at point E?</h3>
The energy of a roller coaster could either be potential energy, kinetic energy or a combination of both potential and kinetic energy.
Using analogies, the energy of the roller coaster at point E can be compared to a falling fruit from a tree which falls onto a pavement and is the rolling towards the floor. Point E can be compared to the midpoint of the fall of the fruit.
At point E
- the kinetic energy of the rollercoaster is small compared to the potential energy
- the potential energy is greater than the kinetic energy
- the total energy is a mixture of potential and kinetic energy
In conclusion, the energy of the rollercoaster at E is both Kinetic and potential energy,
Learn more about potential and kinetic energy at: brainly.com/question/18963960
#SPJ1
Answer:
595391.482946 m/s

Explanation:
E = Energy = 1.85 keV
I = Current = 5.15 mA
e = Charge of electron = 
t = Time taken = 1 second
m = Mass of proton = 
Velocity of proton is given by

The speed of the proton is 595391.482946 m/s
Current is given by

Number of protons is

The number of protons is 
Answer:
<h2>66.67 km/hr</h2>
Explanation:
The average velocity of the car can be found by using the formula

d is the distance
t is the time taken
From the question we have

We have the final answer as
<h3>66.67 km/hr</h3>
Hope this helps you
Answer:
condensing
Explanation:
Condensing is the word used to indicate the change of state of a substance from vapor to liquid, as in this case. During condensation, the substance releases thermal energy to the environment, therefore the kinetic energy of the molecules in the vapor decreases until they become closer to each other and they start to be affected by the intermolecular forces and so the substance becomes a liquid.