Answer: 0.077 M
Explanation:
Expression for rate law for first order kinetics is given by:

where,
k = rate constant = 
t = time taken for decay process = 10 minutes
a = initial amount of the reactant= 0.859 M
a - x = amount left after decay process =?
Putting values in above equation, we get:


Thus the concentration of a after 10.0 minutes is 0.077 M.
Answer:
length = 7*10^(-8)km
width = 4.666*10^(-8) km
Explanation:
We know that:
1 μm = 1*10^(-6) m
and
1km = 1*10^3 m
or
1m = 1*10^(-3) km
if we replace the meter in the first equation, we get:
1 μm = 1*10^(-6)*1*10^(-3) km
1 μm = 1*10^(-6 - 3)km
1 μm = 1*10^(-9)km
Now with this relationship we can transform our measures:
Length: 70 μm is 70 times 1*10^(-9)km, or:
L = 70*1*10^(-9)km = 7*10^(-8)km
And for width, we have 47.66um, this is 46.66 times 1*10^(-9)km, or:
W = 46.66*1*10^(-9)km = 4.666*10^(-8) km
Compared to coffee at room temperature, the molecules of the coffee at 34°C will be moving faster and colliding with one another more frequently.
Answer:
<em>The range is 35.35 m</em>
Explanation:
<u>Projectile Motion</u>
It's the type of motion that experiences an object projected near the Earth's surface and moves along a curved path exclusively under the action of gravity.
Being vo the initial speed of the object, θ the initial launch angle, and
the acceleration of gravity, then the maximum horizontal distance traveled by the object (also called Range) is:

The projectile was launched at an angle of θ=30° with an initial speed vo=20 m/s. Calculating the range:



The range is 35.35 m
Answer:
The current would be same in both situation.
Explanation:
Given that,
Current I = 13 A
Number of turns = 23
We need to calculate the induced emf
Using formula of induced emf is

For N = 1

We need to calculate the current
Using formula of current

Put the value of emf

Now, if the number of turn is 22 , then induced emf would be

Then the current would be




Hence, The current would be same in both situation.