Answer: X = 52,314.12 N
Explanation: Let X be the force the feet of the athlete exerts on the floor.
According to newton's third law of motion the floor gives an upward reaction based on the weight of the athlete and the barbell which is known as the normal reaction ( based on the mass of the athlete and the barbell)
Mass of athlete = 87kg, mass of barbell = 600/ hence total normal reaction from the floor = 87* 61.22/ 9.8 *9.8 = 52,200N.
The athlete lifts the barbell from rest thus making it initial velocity u=0, distance covered = S = 0.65m and the time taken = 1.3s
The acceleration of the barbell is gotten by using the equation of constant acceleration motion
S= ut + 1/2at²
But u = 0
S = 1/2at²
0.65 = 1/2 *a (1.3)²
0.65 = 1.69 * a/2
0.65 * 2 = 1.69 * a
a = 0.65 * 2/ 1.69
a = 0.77m/s²
According to newton's second law of motion
Resultant force = mass * acceleration
And resultant force in this case is
X - 52,200 = (87 + 61.22) * 0.77
X - 52,200 = 148.22 * 0.77
X - 52, 200 = 114.132
X = 114.132 + 52,200
X = 52,314.12 N
Answer: the refraction of light by the atmosphere
Explanation: Refraction is the phenomenon in which there is a change in direction of light passing from one medium to another or from a gradual change in the medium.
Here in case of sunset, the sun rays passes through the varying density of atmosphere because of varying concentrations of dust particles.
Reflection is the phenomenon in which the light bounces back after falling on a surface.
Absorption is the phenomenon in which matter captures the electromagnetic radiations and thus the energy of photons is converted to internal energy of the system.
The probability he finds the trait in none of the dogs
Answer:
The stitches and dimples around a baseball and a golf ball respectively, disturbs the air drag on the balls once they are in motion, allowing the them to travel more easily.
Explanation:
The stitches on a baseball disturbs the air drag on the ball when the ball is in motion, allowing the ball to travel more easily. Depending on the orientation of the ball in flight, the drag changes as the flow is disturbed by the stitches.
A smooth ball with no stitches or dimples has more air drag that opposes the motion.
A golf ball is smooth ball with dimples to create a thin turbulent boundary layer of air that clings to the ball's surface. This allows the smoothly flowing air to follow the ball's surface a little farther around the back side of the ball, thereby decreasing the size of the wake, and allowing the ball to travel more easily.