Answer:
Decrease
Explanation:
Please give me brainliest :)
<span>If your speed changes from 10 km/h to 6 km/h, you have a negative acceleration. The correct option among all the options that are given in the question is the first option or option "a". The other choices are totally incorrect. I hope that this is the answer that has actually come to your help.</span>
Answer:
C. The voltage drop across the resistor is 2.1V and nothing about the current through the resistor.
Explanation:
When connected in parallel, voltage across the resistances are the same. So if 2.1V was dropped across the LED then 2.1V was also dropped across the resistor. However, this tells us nothing about the current through the resistor. We can find the current across the resistor if we know the resistance of the resistor, but that's about it.
If it were a series connection, then the current would have been the same, but the voltage drop were another story.
In collision type of problems since momentum is always conserved
we can say

So here along with this equation we also required one more equation for the restitution coefficient

so above two equations are required to find the velocity after collision
here the change in velocity occurs due to the contact force while they contact in each other
so this is the impulse of collision while they are in contact with each other while in collision which changes the velocity of two colliding objects
Answer:
7.8x10-12N
Explanation:
We know that
Magnetic force = F = qVB
And
Also Kinetic energy K.E is
E = (1/2)mV²
So making v subject
V = √(2E / m)
And
E = KE = 2MeV
= 2 × 106 eV
= 2 × 106 × 1.6 × 10–19 J
= 3.2 × 10–13 J
And then
V= √2x3.2E-13/1.6E-27
1.9E7m/s
Given that
mass of proton = 1.6 × 10–27 kg,
Magnetic field strength B = 2.5 T.
So F= qBv sinစ
=
So F = 1.6 × 10–19 × 2.5 × 1.9 x10^7 x sin 90°
= 7.8 x 10^-12N