The balanced reaction is:
N2 + 3H2 = 2NH3
We are given the amount of the product to be produced.This will be the starting point of our calculations. We use the ideal gas equation to find for the number of moles.
<span>
n = PV / RT = 1.00(.520 L) / (0.08206 atm L/mol K ) 273 K
n= 0.0232 mol NH3
</span>0.0232 mol NH3 (1 mol N2 / 2 mol NH3) = 0.0116 mol N2
<span>Therefore, the correct answer is A.</span>
Answer: The new pressure of the gas in Pa is 388462
Explanation:
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,

where,
= initial pressure of gas at STP = 
= final pressure of gas = ?
= initial volume of gas = 700.0 ml
= final volume of gas = 200.0 ml
= initial temperature of gas = 273 K
= final temperature of gas = 
Now put all the given values in the above equation, we get:


The new pressure of the gas in Pa is 388462
The correctanswer is D hope this helps
Answer:
A reaction in which one element replaces another element in a compound.
Answer:
NH3 has greater water solubility due to intermoleculate interactions
Explanation:
Hi:
If we represent the structures of NH3 and SbH3 we can see that they are similar to the naked eye, this is because N and Sb belong to the same group of the periodic table (group 15).
However, the electronegativity of N is greater than that of Sb. The NH3 molecule is polar and can form an intermolecular interaction called hydrogen bridge with water.
Sb is less electronegative than N. The SBH3 molecule forms an intermolecular interaction with water called dipole-induced dipole.
The zone with positive charge density of the water molecule (hydrogens) is oriented towards the zone with positive charge density of SBH3 (the pair of electrons not shared)
Stronger intermolecular junctions allow greater solubility of NH3 molecules.
Successes in your homework