The greater mass the object has the greater its inertia would be. As inertia becomes greater, the same happens with the force which is needed stop motion. Linear motion and rotational motion are quite different, because the first one depends only on mass while the second embraces mass, size and shape of an object. According to the information I shared, one will not be able to stop 10 kg mass due to far greater inertia than object of 1kg mass.
Hope you will find it helpful.
Answer:
8.9 units
Explanation:
The magnitude of a 3-D vector B can be calculated by using the formula:

where
are the x, y and z components of the vector, respectively.
For the vector in the problem:

Substituting into the equation, we find the magnitude of B:

So, the magnitude of B is 8.9 units.
Work = (force) x (distance)
Each time she lifts the weight, she does
(550 N) x (0.5 m) = 275 joules of work against gravity.
Each time she lets the bar down gently, gravity does
(550 N) x (0.5 m) = 275 joules of work against her muscles.
If the human physical muscular system were 100% efficient, and capable
of absorbing work as well as spending it, then the bodybuilder would do
exactly zero work in the process of 1-up followed by 1-down.
Answer:
Option C and D only
Explanation:
Option A is incorrect because refractive index of a material is the ratio of speed of light in vacuum to the speed of light in a any given medium
Option B is correct as the speed of light in vacuum is always greater than the speed of light in any given medium.
Option C is correct
Option D is incorrect
Option E is incorrect because the denser the medium the more is the refractive index. Water is denser than air, hence it should have more refractive index as compared to that of air.
One thing I think we must put in the capsule is our pictures. Very necessary, so that other inhabitants would see how we look like.