Answer:

Explanation:
given,
mass of wheel(M) = 3 Kg
radius(r) = 35 cm
revolution (ω_i)= 800 rev/s
mass (m)= 1.1 Kg
I_{wheel} = Mr²
when mass attached at the edge
I' = Mr² + mr²
using conservation of angular momentum






The first two are always the reactants the products come after so they are last
Answer:

Explanation:
Given data
Force F=2 N
Length L=17 cm = 0.17 m
Spring Constant k=42 N/m
To find
Relaxed length of the spring
Solution
From Hooke's Law we know that

We can calculate the density of the balloon as follows:

Therefore, the balloon will fall
Since the density of air is about 0.00123 g/cm^3 , the balloon is much more dense than the surrounding air. As a result, the balloon weighs more than the air that it displaces so the balloon will fall.