The de Broglie wavelength of a subatomic particle is 2.09 nm.
λ = h m v = h
momentum : wherein 'h' is the Plank's steady. This equation pertaining to the momentum of a particle with its wavelength is de Broglie equation and the wavelength calculated the use of this relation is de Broglie wavelength.
Frequency is the ratio of velocity and wavelength in relation to hurry. In evaluation, wavelength refers back to the ratio of velocity and frequency.
Wavelength is the gap between the crests of waves or a person's fashionable mind-set. An instance of wavelength is the gap between the crest of two waves. An instance of wavelength is while you and some other character share the equal standard attitude and might for that reason speak properly.
calculation is given in the image below
de Broglie wavelength λ = h/mv
= (6.626 * 10^-34)/9.1 * 10^-31 *351 *10^3
= 2.07 *10^-9
Hence, = 2.op nm
Learn more about de Broglie wavelength here:-brainly.com/question/16595523
#SPJ4
Answer:
2.5 L
Explanation:
The stoichiometric ratio of N2 to N2O4 is 1:1
The answer is zero!
let me know if you need help with anything else! :)
I found this....
Supraglacial Moraine
A supraglacial moraine is material on the surface of a glacier. Lateral and medial moraines can be supraglacial moraines. Supraglacial moraines are made up of rocks and earth that have fallen on the glacier from the surrounding landscape. Dust and dirt left by wind and rain become part of supraglacial moraines. Sometimes the supraglacial moraine is so heavy, it blocks the view of the ice river underneath.
If a glacier melts, supraglacial moraine is evenly distributed across a valley.
Ground Moraine
Ground moraines often show up as rolling, strangely shaped land covered in grass or other vegetation. They don’t have the sharp ridges of other moraines. A ground moraine is made of sediment that slowly builds up directly underneath a glacier by tiny streams, or as the result of a glacier meeting hills and valleys in the natural landscape. When a glacier melts, the ground moraine underneath is exposed.
Ground moraines are the most common type of moraine and can be found on every continent.
Terminal Moraine
A terminal moraine is also sometimes called an end moraine. It forms at the very end of a glacier, telling scientists today important information about the glacier and how it moved. At a terminal moraine, all the debris that was scooped up and pushed to the front of the glacier is deposited as a large clump of rocks, soil, and sediment.
Scientists study terminal moraines to see where the glacier flowed and how quickly it moved. Different rocks and minerals are located in specific places in the glacier’s path. If a mineral that is unique to one part of a landscape is present in a terminal moraine, geologists know the glacier must have flowed through that area.