Frictional force always opposes applied force, so the net force on the cart would have to be 19N - 1.7N. The acceleration can then be solved by using the relation: F = ma. This is shown below:
Net force = 19 - 1.7 = 17.3 N
Acceleration = Force / mass
Acceleration = 17.3 / 2
Acceleration = 8.65 N/m
Answer:
it's ii) R is correct while A is incorrect
Explanation:
cuz, both statements are correct but the reason is not the correct reason for the assertion,
Answer:
The change in current at is
Explanation:
From the question we are told that
The resistance is
The current is
The change in voltage with respect to time is
The change in resistance with time is
According to ohm's law
differentiating with respect to time using chain rule
substituting value at R = 456
The magnitude of the electric field at the proton's location is 10,437.5 N/C.
<h3>What the magnitude of the
electric field?</h3>
The size of the electric field is basically characterized as the power per charge on the test charge. On the off chance that the electric field strength is meant by the image E. Very much like gravity, electric fields work the same way. In any case, while gravity generally draws in, an electric field, then again, can either rebuff or draw in. By and large, the Electric Field submits to the super-position guideline. the all out Electric Field from various charges is equivalent to the amount of the electric fields from each charge separately. An electric field is the actual field that encompasses electrically charged particles and applies force on any remaining charged particles in the field, either drawing in or repulsing them.
Learn more about the magnitude of the electric field, visit
brainly.com/question/26898699
#SPJ4