Answer:
a)15 N
b)12.6 N
Explanation:
Given that
Weight of block (wt)= 21 N
μs = 0.80 and μk = 0.60
We know that
Maximum value of static friction given as
Frs = μs m g = μs .wt
by putting the values
Frs= 0.8 x 21 = 16.8 N
Value of kinetic friction
Frk= μk m g = μk .wt
By putting the values
Frk= 0.6 x 21 = 12.6 N
a)
When T = 15 N
Static friction Frs= 16.8 N
Here the value of static friction is more than tension T .It means that block will not move and the value of friction force will be equal to the tension force.
Friction force = 15 N
b)
When T= 35 N
Here value of tension force is more than maximum value of static friction that is why block will move .We know that when body is in motion then kinetic friction will act on the body.so the value of friction force in this case will be 12.6 N
Friction force = 12.6 N
Answer:
The answer to this question can be defined as follows:
Explanation:
Therefore the 4th harmonicas its node is right and over the pickup so, can not be captured from 16.25, which is 1:4 out of 65. Normally, it's only conceptual for the certain harmonic, this will be low, would still be heard by the catcher.
Instead, every harmonic node has maximum fractions along its string; the very first node is the complete string length and the second node is half a mile to the third node, which is one-third up and so on.
Answer:
145 m
Explanation:
Given:
Wavelength (λ) = 2.9 m
we know,
c = f × λ
where,
c = speed of light ; 3.0 x 10⁸ m/s
f = frequency
thus,

substituting the values in the equation we get,

f = 1.03 x 10⁸Hz
Now,
The time period (T) = 
or
T =
= 9.6 x 10⁻⁹ seconds
thus,
the time interval of one pulse = 100T = 9.6 x 10⁻⁷ s
Time between pulses = (100T×10) = 9.6 x 10⁻⁶ s
Now,
For radar to detect the object the pulse must hit the object and come back to the detector.
Hence, the shortest distance will be half the distance travelled by the pulse back and forth.
Distance = speed × time = 3 x 10^8 m/s × 9.6 x 10⁻⁷ s) = 290 m {Back and forth}
Thus, the minimum distance to target =
= 145 m
Answer:
Of longitudinal waves
Explanation:
Depending on the direction of the oscillation, there are two types of waves:
- Transverse waves: in a transverse wave, the oscillations occur perpendicularly to the direction of propagation of the wave. Examples are electromagnetic waves.
- Longitudinal waves: in a longitudinal wave, the oscillations occur parallel to the direction of propagation of the wave. In such a wave, the oscillations are produced by alternating regions of higher density of particles, called compressions, and regions of lower density of particles, called rarefactions. Examples of longitudinal waves are sound waves.
The answer for this problem would be:
Assuming non-relativistic momentum, then you have:
ΔxΔp = mΔxΔv = h / (4)
Δv = h / (4πmΔx)
m ~ 1.67e-27 h ~ 6.62e-34,Δx = 4e-15 -->
Δv ~ 6.62e-34 / (4π * 1.67e-27 * 4e-15) ~ 7,886,270 m/s ~ 7.89e6 m/s
That's about 1% of the speed of light, the assumption that it's non-relativistic.