I would say radio waves infared rays and xray
Evidence that seismic waves transfer energy without transferring matter: Seismic waves do not transfer matter because the waves travel away from the faults because the movement in the crust occur along the faults as the seismic waves continue to travel away.
'H' = height at any time
'T' = time after both actions
'G' = acceleration of gravity
'S' = speed at the beginning of time
Let's call 'up' the positive direction.
Let's assume that the tossed stone is tossed from the ground, not from the tower.
For the stone dropped from the 50m tower:
H = +50 - (1/2) G T²
For the stone tossed upward from the ground:
H = +20T - (1/2) G T²
When the stones' paths cross, their <em>H</em>eights are equal.
50 - (1/2) G T² = 20T - (1/2) G T²
Wow ! Look at that ! Add (1/2) G T² to each side of that equation,
and all we have left is:
50 = 20T Isn't that incredible ? ! ?
Divide each side by 20 :
<u>2.5 = T</u>
The stones meet in the air 2.5 seconds after the drop/toss.
I want to see something:
What is their height, and what is the tossed stone doing, when they meet ?
Their height is +50 - (1/2) G T² = 19.375 meters
The speed of the tossed stone is +20 - (1/2) G T = +7.75 m/s ... still moving up.
I wanted to see whether the tossed stone had reached the peak of the toss,
and was falling when the dropped stone overtook it. The answer is no ... the
dropped stone was still moving up at 7.75 m/s when it met the dropped one.
This doesn’t make any sense
Answer:
Explanation:
Force needed to apply start the box is greater than the force needed to keep it moving because static friction is greater than the kinetic friction .
A threshold force is needed to move the box and when box started to move kinetic friction comes into play.
Friction force is directly related to the weight of the box as the friction force is
coefficient of friction time Normal reaction .
And Normal reaction is equal to the weight of box if no force is applied.

