Answer:
Transferred material is in the same relative position on the disk as on the original sample
Explanation:
The usefulness of blotting techniques in molecular biology is that transferred material is in the same relative position on the disk as on the original sample
Answer:
n = 756.25 giga electrons
Explanation:
It is given that,
If the charge on the negative plate of the capacitor, 
Let n is the number of excess electrons are on that plate. Using the quantization of charges, the total charge on the negative plate is given by :

e is the charge on electron

or
n = 756.25 giga electrons
So, there are 756.25 giga electrons are on the plate. Hence, this is the required solution.
Answer:
Explanation:
Use the one-dimensional equation
where vf is the final velocity of the dog, v0 is the initial velocity of the dog, a is the acceleration of the dog, and t is the time it takesto reach that final velocity. For us:
0 = 2 + -.43t and
-2 = -.43t so
t = 4.7 seconds