She puts each block of ice in the same 3000 mL beaker, each with 2000 mL of water at room temperature, and measures the temperature before and after adding ice. Therefore, small blocks of ice will have the same temperature.
Joanna puts two blocks of ice (one larger than the other) into separate cups and fills each with water. She compares the final water temperature of the two cups after each block of ice melts.
Put each block of ice in the same 3000 mL beaker, each at room temperature, put 2000 mL of water in it, and measure the temperature before and after adding ice. This way you keep the water at the same temperature in the beginning, then the temperature changes after you add the ice, giving you a better idea of the final temperature reading.
Learn more about Temperature here brainly.com/question/24746268
#SPJ9
The easiest way to explain it is roughly identical to the way that your teacher explained it in class. If there were any easier way ... like writing it here in a few paragraphs ... then that's what the teacher would have done. You would have been given the easy explanation on the first day of class, printed on one sheet of paper, and you would have had the rest of the year to practice it and get really good at it.
If the class spent a month teaching it, then that's about how long it takes. Sorry.
Answer:
i think it's 2km pm
Explanation:
2km x 30 60.. start was 30, and now your at 90.. we had to determine how much time it took.. so 2 is the average.. or atleast per minute and sorry it i still didnt answer ur question lol im just trynna help
Answer:
The maximum potential difference is 186.02 x 10¹⁵ V
Explanation:
formula for calculating maximum potential difference

where;
Ke is coulomb's constant = 8.99 x 10⁹ Nm²/c²
k is the dielectric constant = 2.3
b is the outer radius of the conductor = 3 mm
a is the inner radius of the conductor = 0.8 mm
λ is the linear charge density = 18 x 10⁶ V/m
Substitute in these values in the above equation;

Therefore, the maximum potential difference this cable can withstand is 186.02 x 10¹⁵ V
Answer:
The acceleration is equal to the net force divided by the mass. If the net force acting on an object doubles, its acceleration is doubled. If the mass is doubled, then acceleration will be halved. If both the net force and the mass are doubled, the acceleration will be unchanged.