Answer:
a) 567J
b) 283.5J
c)850.5J
Explanation:
The expression for the translational kinetic energy is,

Substitute,
14kg for m
9m/s for v

The translational kinetic energy of the center of mass is 567J
(B)
The expression for the rotational kinetic energy is,

The expression for the moment of inertia of the cylinder is,

The expression for angular velocity is,

substitute
1/2mr² for I
and vr for w
in equation for rotational kinetic energy as follows:



The rotational kinetic energy of the center of mass is 283.5J
(c)
The expression for the total energy is,

substitute 567J for E(r) and 283.5J for E(R)

The total energy of the cylinder is 850.5J
Answer:
because of the idea that like charges get repulsion as a force.
Explanation:
because you wrap the ball with foil, the negative charges will leave the foil and go into the ball by induction. This leaves the foil as a positively charged particle since its electrons left it for the ball, making the ball a negatively charged particle. but if you bring the negative charge near the foil, the electrons will transfer from that and go into the foil, making it negatively charged. Now, because the ball and the foil have the same charge, they repel. the foil flies off.
consider the motion along the horizontal direction :
v₀ = initial velocity in horizontal direction as the ball rolls off the table = 3.0 m/s
X = horizontal displacement of the ball = 2.0 m
a = acceleration along the horizontal direction = 0 m/s²
t = time taken to land = ?
using the kinematics equation
X = v₀ t + (0.5) a t²
2.0 = 3.0 t + (0.5) (0) t²
t = 2/3
consider the motion of the ball along the vertical direction
v₀ = initial velocity in vertical direction as the ball rolls off the table = 0 m/s
Y = vertical displacement of the ball = height of the table = h
a = acceleration along the vertical direction = 9.8 m/s²
t = time taken to land = 2/3
using the kinematics equation
Y = v₀ t + (0.5) a t²
h = 0 t + (0.5) (9.8) (2/3)²
h = 2.2 m
C 2.2 m
A solid has a definite meaning that there is only one shape there can be meaning a solid has a definite volume