<span>a.The hiker had an easy, level trail from 11:00-12:00 and was able to travel the fastest during that time period.---> may be because this was indeed fastest stage
b.The hiker got tired and walked the slowest from 1:00-2:00.---> no, because this was not the slowest stage
c.The hiker stopped for lunch from 11:00-12:00 and that slowed him down.---> no because this was the fastest stage
d.The hiker ended up in the same place that he started.---> no, because the hiker walked more toward east than toward west and more toward south than toward north.
Answer: option a) </span>
The Bio-Mechanical term that defines managing your force while maintaining balance is "Stability"
Answer:
Feathers are great thermal insulators.
Explanation:
Feathers are great thermal insulators. The loose structure of down feathers traps air.
As a result, energy cannot be transmitted easily through down feathers. This means birds are insulated from cold air outside, plus their body heat doesn't escape easily either.
Human beings discovered that down feathers are good for insulation long ago. For example, documents from the 1600s show that Russian merchants sold “bird down" to the Dutch hundreds of years ago.
Today, down is used in all sorts of products, including coats, bedding, and sleeping bags, to help better insulate the user from cold weather. Down can be collected from many different types of birds, but most of today's supply comes from domestic geese.
If you have a down coat or comforter, is it all down? In the United States, laws require that products labeled “100 percent down" contain only down feathers.
If your product is labeled “down," it can contain a mixture of both down feathers and synthetic fibers. Not all down feathers are created equal, though.
Down insulation is rated on a measure called “fill power." The higher the fill power, the more the down insulates.
The highest fill-power rating — 1200 — goes to eiderdown, which comes from the Common Eider duck. Eiderdown tends to be expensive.
Answered using calculus.
Antidifferentiated the acceleration to get velocity. Added variable c as we do not know if there was an extra number there yet.
Knowing that when time is 0, the velocity is 20, we can substitute those numbers into the equation and find that c = 20.
Now we have full velocity equation: v = 1.5t + 20
Now we substitute 4 into t to find out the velocity after 4 seconds. This gives us the final answer of 26m/s
Answer:
, it will sink
Explanation:
The density of an object is given by

where
m is the mass of the object
V is its volume
For the body in the problem, we have
m = 4 kg = 4000 g

Therefore, its density is

And the object will sink in water, because its density is larger than that of water, which is
. (an object sinks when its density is larger than that of water, otherwise it floats).