Answer:

Explanation:
Given that:

R = (0.1) m
To find the electric field for r < R by using Gauss Law

For r < R



where;




Answer:
121.3 cm^3
Explanation:
P1 = Po + 70 m water pressure (at a depth)
P2 = Po (at the surface)
T1 = 4°C = 273 + 4 = 277 K
V1 = 14 cm^3
T2 = 23 °C = 273 + 23 = 300 K
Let the volume of bubble at the surface of the lake is V2.
Density of water, d = 1000 kg/m^3
Po = atmospheric pressure = 10^5 N/m^2
P1 = 10^5 + 70 x 1000 x 10 = 8 x 10^5 N/m^2
Use the ideal gas equation

By substituting the values, we get

V2 = 121.3 cm^3
Thus, the volume of bubble at the surface of lake is 121.3 cm^3.
Answer:
If it had more or less mass, the atmosphere would be very different with either too much ammonia and methane or too little oxygen and water
Explanation:
Answer:
The distance of m2 from the ceiling is L1 +L2 + m1g/k1 + m2g/k1 + m2g/k2.
See attachment below for full solution
Explanation:
This is so because the the attached mass m1 on the spring causes the first spring to stretch by a distance of m1g/k1 (hookes law). This plus the equilibrium lengtb of the spring gives the position of the mass m1 from the ceiling. The second mass mass m2 causes both springs 1 and 2 to stretch by an amout proportional to its weight just like above. The respective stretchings are m2g/k1 for spring 1 and m2g/k2 for spring 2. These plus the position of m1 and the equilibrium length of spring 2 L2 gives the distance of L2 from the ceiling.