Answer:
The particles will more likely to move faster since they are converted from a liquid to gas.
Rules for States of Matter:
1. Solid particles always are packed close together and don't have much space to move.
2. Liquid particles have space to move around but are still packed together, but not as close as solid.
3. Gas particles are moving freely, in fact they are in the air! Gas particles are free to move wherever. For example, the air has gas particles that are constantly bumping into each other.
Let me know if I am right =)
Answer:
Decreases to half.
Explanation:
From the question given above, the following data were obtained:
Initial mass (m₁) = m
Initial force (F₁) = F
Initial acceleration (a₁) =?
Final mass (m₂) = ½m
Final force (F₂) = ¼F
Final acceleration (a₂) =?
Next, we shall determine a₁. This can be obtained as follow:
F₁ = m₁a₁
F = ma₁
Divide both side by m
a₁ = F / m
Next, we shall determine a₂.
F₂ = m₂a₂
¼F = ½ma₂
2F = 4ma₂
Divide both side by 4m
a₂ = 2F / 4m
a₂ = F / 2m
Finally, we shall determine the ratio of a₂ to a₁. This can be obtained as follow:
a₁ = F / m
a₂ = F / 2m
a₂ : a₁ = a₂ / a₁
a₂ / a₁ = F/2m ÷ F/m
a₂ / a₁ = F/2m × m/F
a₂ / a₁ = ½
Cross multiply
a₂ = ½a₁
From the illustrations made above, the acceleration of the car will decrease to half the original acceleration
Answer:
here
Explanation:
Climate is determined by the temperature and precipitation characteristics of a region over time. The temperature characteristics of a region are influenced by natural factors such as latitude, elevation and the presence of ocean currents.
Answer:
8.0 N
Explanation:
Force: This can be defined as the mass of a body and its acceleration. The S.I unit of Force is Newton (N).
Mathematically, Fore is expressed as
F = ma ........................... equation 1
Where F = force, m = mass, a = acceleration.
and
I = mΔv
Δv = I/m ............................ Equation 2
Where I = impulse, m = mass, Δv = change in velocity
Given: I = 6.0 Newton-seconds, m = 0.1 kilogram.
Substituting into equation 2
Δv = 6.0/0.1
Δv = 60 m/s.
But
a = Δv/t
where t = time = 0.75 seconds.
a = 60/0.75
a = 80 m/s²
Substitute the values of a and m into equation 1.
F = 0.1(80)
F = 8.0 N.
Thus the average force produced = 8.0 N
Answer:

Explanation:
<u>Instant Acceleration</u>
The kinetic magnitudes are usually related as scalar or vector equations. By doing so, we are assuming the acceleration is constant over time. But when the acceleration is variable, the relations are in the form of calculus equations, specifically using derivatives and/or integrals.
Let f(t) be the distance traveled by an object as a function of the time t. The instant speed v(t) is defined as:

And the acceleration is

Or equivalently

The given height of a projectile is

Let's compute the speed

And the acceleration

It's a constant value regardless of the time t, thus
