The potential energy decreases while the kinetic energy increases.
Btu/(lb-°F) J/(g-°C i mean this is the correct answer
Answer:
Part a)
%
Part b)
%
Explanation:
As we know that total power used in the room is given as
![P = P_1 + P_2 + P_3 + P_4](https://tex.z-dn.net/?f=P%20%3D%20P_1%20%2B%20P_2%20%2B%20P_3%20%2B%20P_4)
here we have
![P_1 = (110)(3) = 330 W](https://tex.z-dn.net/?f=P_1%20%3D%20%28110%29%283%29%20%3D%20330%20W)
![P_2 = 100 W](https://tex.z-dn.net/?f=P_2%20%3D%20100%20W)
![P_3 = 60 W](https://tex.z-dn.net/?f=P_3%20%3D%2060%20W)
![P_4 = 3 W](https://tex.z-dn.net/?f=P_4%20%3D%203%20W)
![P = 330 + 100 + 60 + 3](https://tex.z-dn.net/?f=P%20%3D%20330%20%2B%20100%20%2B%2060%20%2B%203)
![P = 493 W](https://tex.z-dn.net/?f=P%20%3D%20493%20W)
Part a)
Since power supply is at 110 Volt so the current obtained from this supply is given as
![110\times i = 493](https://tex.z-dn.net/?f=110%5Ctimes%20i%20%3D%20493%20)
![i = 4.48 A](https://tex.z-dn.net/?f=i%20%3D%204.48%20A)
now resistance of transmission line
![R = \frac{\rho L}{A}](https://tex.z-dn.net/?f=R%20%3D%20%5Cfrac%7B%5Crho%20L%7D%7BA%7D)
![R = \frac{(2.8 \times 10^{-8})(10\times 10^3)}{\pi(4.126\times 10^{-3})^2}](https://tex.z-dn.net/?f=R%20%3D%20%5Cfrac%7B%282.8%20%5Ctimes%2010%5E%7B-8%7D%29%2810%5Ctimes%2010%5E3%29%7D%7B%5Cpi%284.126%5Ctimes%2010%5E%7B-3%7D%29%5E2%7D)
![R = 5.23 \ohm](https://tex.z-dn.net/?f=R%20%3D%205.23%20%5Cohm)
now power loss in line is given as
![P = i^2 R](https://tex.z-dn.net/?f=P%20%3D%20i%5E2%20R)
![P = (4.48)^2(5.23)](https://tex.z-dn.net/?f=P%20%3D%20%284.48%29%5E2%285.23%29)
![P = 105 W](https://tex.z-dn.net/?f=P%20%3D%20105%20W)
Now percentage loss is given as
![percentage = \frac{loss}{supply} \times 100](https://tex.z-dn.net/?f=percentage%20%3D%20%5Cfrac%7Bloss%7D%7Bsupply%7D%20%5Ctimes%20100)
![percentage = \frac{105}{493} \times 100](https://tex.z-dn.net/?f=percentage%20%3D%20%5Cfrac%7B105%7D%7B493%7D%20%5Ctimes%20100)
%
Part b)
now same power must have been supplied from the supply station at 110 kV, so we have
![110 \times 10^3 (i ) = 493](https://tex.z-dn.net/?f=110%20%5Ctimes%2010%5E3%20%28i%20%29%20%3D%20493)
![i = 4.48\times 10^{-3} A](https://tex.z-dn.net/?f=i%20%3D%204.48%5Ctimes%2010%5E%7B-3%7D%20A)
now power loss in line is given as
![P = i^2 R](https://tex.z-dn.net/?f=P%20%3D%20i%5E2%20R)
![P = (4.48 \times 10^{-3})^2(5.23)](https://tex.z-dn.net/?f=P%20%3D%20%284.48%20%5Ctimes%2010%5E%7B-3%7D%29%5E2%285.23%29)
![P = 1.05 \times 10^{-4} W](https://tex.z-dn.net/?f=P%20%3D%201.05%20%5Ctimes%2010%5E%7B-4%7D%20W)
Now percentage loss is given as
![percentage = \frac{loss}{supply} \times 100](https://tex.z-dn.net/?f=percentage%20%3D%20%5Cfrac%7Bloss%7D%7Bsupply%7D%20%5Ctimes%20100)
![percentage = \frac{1.05 \times 10^{-4}}{493} \times 100](https://tex.z-dn.net/?f=percentage%20%3D%20%5Cfrac%7B1.05%20%5Ctimes%2010%5E%7B-4%7D%7D%7B493%7D%20%5Ctimes%20100)
%
The answer yr looking for would b true!
A gravitational field is the field generated by a massive body, that extends into the entire space. Every object with mass m experiences a force F when immersed in a gravitational field. The intensity of the force is equal to
![F= \frac{GM}{r^2} m](https://tex.z-dn.net/?f=F%3D%20%5Cfrac%7BGM%7D%7Br%5E2%7D%20%20m)
where
![G=6.67 \cdot 10^{-11} m^3 Kg^{-1} s^{-2}](https://tex.z-dn.net/?f=G%3D6.67%20%5Ccdot%2010%5E%7B-11%7D%20m%5E3%20Kg%5E%7B-1%7D%20s%5E%7B-2%7D)
is the gravitational constant, M is the mass of the source of the field (e.g. the mass of a planet), and r is the distance between the object and the source of the field. The force is always attractive.
A possible way to measure the intensity of a gravitational field is by measuring the acceleration a of the object immersed in this field. In fact, for Newton's second law we have:
![F=ma](https://tex.z-dn.net/?f=F%3Dma)
but since
![F= \frac{GM}{r^2} m](https://tex.z-dn.net/?f=F%3D%20%5Cfrac%7BGM%7D%7Br%5E2%7D%20m)
we can write
![a = \frac{GM}{r^2}](https://tex.z-dn.net/?f=a%20%3D%20%20%5Cfrac%7BGM%7D%7Br%5E2%7D)
Therefore, by measuring the acceleration of the object, we also measure the intensity of the field.