Answer:
128 m
Explanation:
From the question given above, the following data were obtained:
Horizontal velocity (u) = 40 m/s
Height (h) = 50 m
Acceleration due to gravity (g) = 9.8 m/s²
Horizontal distance (s) =?
Next, we shall determine the time taken for the package to get to the ground.
This can be obtained as follow:
Height (h) = 50 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
50 = ½ × 9.8 × t²
50 = 4.9 × t²
Divide both side by 4.9
t² = 50 / 4.9
t² = 10.2
Take the square root of both side
t = √10.2
t = 3.2 s
Finally, we shall determine where the package lands by calculating the horizontal distance travelled by the package after being dropped from the plane. This can be obtained as follow:
Horizontal velocity (u) = 40 m/s
Time (t) = 3.2 s
Horizontal distance (s) =?
s = ut
s = 40 × 3.2
s = 128 m
Therefore, the package will land at 128 m relative to the plane
Kinetic and Potential Energy HistoryA roller coaster train going down hill represents merely a complex case as a body is descending an inclined plane. Newton's first two laws relate force and acceleration, which are key concepts in roller coaster physics. At amusement parks, Newton's laws can be applied to every ride. These rides range from 'The Swings' to The 'Hammer'. Newton was also one of the developers of calculus which is essential to analyzing falling bodies constrained on more complex paths than inclined planes. A roller coaster rider is in an gravitational field except with the Principle of Equivalence.Potential EnergyPotential energy is the same as stored energy. The "stored" energy is held within the gravitational field. When you lift a heavy object you exert energy which later will become kinetic energy when the object is dropped. A lift motor from a roller coaster exerts potential energy when lifting the train to the top of the hill. The higher the train is lifted by the motor the more potential energy is produced; thus, forming a greater amount if kinetic energy when the train is dropped. At the top of the hills the train has a huge amount of potential energy, but it <span>has very little kinetic energy.Kinetic Energy The word "kinetic" is derived from the Greek word meaning to move, and the word "energy" is the ability to move. Thus, "kinetic energy" is the energy of motion --it's ability to do work. The faster the body moves the more kinetic energy is produced. The greater the mass and speed of an object the more kinetic energy there will be. Hope this helped:))))</span>
Answer:
(a) The angle of projection is 63 degree.
(b) The velocity of projection is 24.5 m/s.
Explanation:
Height, h = 1 m
horizontal distance, d = 50 m
time, t = 4.5 s
Let the initial velocity is u and the angle is A.
(a) Horizontal distance = horizontal velocity x time
50 = u cos A x 4.5
u cos A = 11.1 .....(1)
Use second equation of motion in vertical direction

Divide (2) by (1)
tan A = 1.97
A = 63 degree
(b) Substitute the value of A in equation (2)
u x sin 63 = 21.8
u = 24.5 m/s
Answer:
t = 25.5 min
Explanation:
To know how many minutes does Richard save, you first calculate the time that Richard takes with both velocities v1 = 65mph and v2 = 80mph.

Next, you calculate the difference between both times t1 and t2:

This is the time that Richard saves when he drives with a speed of 80mph. Finally, you convert the result to minutes:

hence, Richard saves 25.5 min (25 min and 30 s) when he drives with a speed of 80mph