<span>Melting of ice is an endothermic process, meaning that energy is absorbed. When ice spontaneously melts, ΔH (change in enthalpy) is "positive". ΔS (entropy change) is also positive, because, becoming a liquid, water molecules lose their fixed position in the ice crystal, and become more disorganized. ΔG (free energy of reaction) is negative when a reaction proceeds spontaneously, as it happens in this case. Ice spontaneously melts at temperatures higher than 0°C. However, liquid water also spontaneously freezes at temperatures below 0°C. Therefore the temperature is instrumental in determining which "melting" of ice, or "freezing" of water becomes spontaneous. The whole process is summarized in the Gibbs free energy equation:
ΔG = ΔH – TΔS</span>
Answer:
change in internal energy 3.62*10^5 J kg^{-1}
change in enthalapy 5.07*10^5 J kg^{-1}
change in entropy 382.79 J kg^{-1} K^{-1}
Explanation:
adiabatic constant 
specific heat is given as 
gas constant =287 J⋅kg−1⋅K−1

specific heat at constant volume

change in internal energy 

change in enthalapy 

change in entropy



We know that 1 minute= 60 seconds (or 1 min= 60 s).
10 min* (60 s/ 1 min)* (2.0 m/ 1 s)= 1,200 m.
(Note that the units cancel out so you get the answer)
The final answer is 1,200 m.
Hope this helps~
Tsunami? I think so maybe it’s right
Answer:
a moving object will keep moving if not stopped
the sun being at the center of the solar system
Explanation:
Galileo is known for being the first person make a telescope, there fore being the first person to see that the sun is in the center of the solar system. he also came up with the theory that if something is pushed, it would keep moving until stopped by another force. For example, say you drop your pencil, it keeps falling until it hits the ground. That is exactly what Galileo did in his Leaning Tower of Pisa experiment and found that theory to be true.