Answer:
The probability that it will take a week for it three wet weather on 3 separate days is 0.06166 and its standard deviation is 0.9447
Explanation:
We are given that A city of Punjab has 15 percent chance of wet weather on any given day.
So, Probability of wet weather = 0.15
Probability of not being a wet weather = 1-0.15 =0.85
We are supposed to find probability that it will take a week for it three wet weather on 3 separate days
Total number of days in a week = 7
We will use binomial over here
n = 7
p =probability of failure = 0.15
q = probability of success=0.85
r=3
Formula :

Standard deviation =
Standard deviation =
Standard deviation =0.9447
Hence The probability that it will take a week for it three wet weather on 3 separate days is 0.06166 and its standard deviation is 0.9447
Answer:
Hello your question is poorly written below is the complete question
Suppose the battery in a clock wears out after moving Ten thousand coulombs of charge through the clock at a rate of 0.5 Ma how long did the clock run on does battery and how many electrons per second slowed?
answer :
a) 231.48 days
b) n = 3.125 * 10^15
Explanation:
Battery moved 10,000 coulombs
current rate = 0.5 mA
<u>A) Determine how long the clock run on the battery. use the relation below</u>
q = i * t ----- ( 1 )
q = charge , i = current , t = time
10000 = 0.5 * 10^-3 * t
hence t = 2 * 10^7 secs
hence the time = 231.48 days
<u>B) Determine how many electrons per second flowed </u>
q = n*e ------ ( 2 )
n = number of electrons
e = 1.6 * 10^-19
q = 0.5 * 10^-3 coulomb ( charge flowing per electron )
back to equation 2
n ( number of electrons ) = q / e = ( 0.5 * 10^-3 ) / ( 1.6 * 10^-19 )
hence : n = 3.125 * 10^15
Answer:
3.735×10⁻⁶ N
Explanation:
From newton' s law of universal gravitation,
F = Gmm'/r² .............................. Equation 1
Where F = Gravitational force between the person and the refrigerator, m = mass of the person, m' = mass of the refrigerator, r = distance between the person and the refrigerator. G = gravitational universal constant.
Given: m = 70 kg, m' = 200 kg, r = 0.5 m
Constant: G = 6.67×10⁻¹¹ Nm²/kg².
F = (6.67×10⁻¹¹×70×200)/0.5²
F = 93380×10⁻¹¹/0.25
F = 373520×10⁻¹¹
F = 3.735×10⁻⁶ N
Hence the force between the person and the refrigerator = 3.735×10⁻⁶ N