Answer:
The play will be more appealing to a younger audience.
Explanation:
A younger audience will more likely appreciate current pop hits rather than classical score.
Considering the definition of pOH and strong base, the pOH of the aqueous solution is 1.14
The pOH (or potential OH) is a measure of the basicity or alkalinity of a solution and indicates the concentration of ion hydroxide (OH-).
pOH is expressed as the logarithm of the concentration of OH⁻ ions, with the sign changed:
pOH= - log [OH⁻]
On the other hand, a strong base is that base that in an aqueous solution completely dissociates between the cation and OH-.
LiOH is a strong base, so the concentration of the hydroxide will be equal to the concentration of OH-. This is:
[LiOH]= [OH-]= 0.073 M
Replacing in the definition of pOH:
pOH= -log (0.073 M)
<u><em>pOH= 1.14 </em></u>
In summary, the pOH of the aqueous solution is 1.14
Learn more:
Answer:
John is buying shirts for his softball team. He will pay a one-time processing fee of $27.50 and $12.75 per each shirt ordered. Which equation can be used to find y, the total cost to buy xshirts? John is buying shirts for his softball team. He will pay a one-time processing fee of $27.50 and $12John is buying shirts for his softball team. He will pay a one-time processing fee of $27.50 and $12.75 per each shirt ordered. Which equation can be used to find y, the total cost to buy xshirts? xdsz.75 per each shirt ordered. Which equation can be used to find y, the total cost to buy xshirts? John is buying shirts for his softball team. He will pay a one-time processing fee of $27.50 and $12.75 per each shirt ordered. Which equation can be used to find y, the total cost to buy xshirts? John is buying shirts for his softball team. He will pay a one-time processing fee of $27.50 and $12.75 per each shirt ordered. Which equation can be used to find y, the total cost to buy xshirts?
Explanation:
Answer:
Cac2 is a answer please mark me brainliest
Answer:
d. Because those chemicals are easily made when CO2 reacts with water, forming H2CO3 (via carbonic anhydrase