3.74×
3.74 ×
molecules of propane were in the erlenmeyer flask.
number of moles of propane can be calculated as moles of propane.
mass of propane = 0.274 g
molar mass of propane = 44.1
So this gives us the value of 6.21×
moles of propane
No one mole of propane As a 6.0-2 × 
so, 6.21 ×
× 6. 022 × 10^23
= 3.74 ×
Therefore, molecules of propane were in the erlenmeyer flask is found to be 3.74 ×
<h3>What is erlenmeyer flask?</h3>
- A laboratory flask with a flat bottom, a conical body, and a cylindrical neck is known as an Erlenmeyer flask, sometimes known as a conical flask or a titration flask.
- It bears the name Emil Erlenmeyer after the German chemist.
<h3>What purpose does an Erlenmeyer flask serve?</h3>
- Liquids are contained in Erlenmeyer flasks, which are also used for mixing, heating, chilling, incubating, filtering, storing, and other liquid-handling procedures.
- For titrations and boiling liquids, their sloped sides and small necks make it possible to whirl the contents without worrying about spills.
To learn more about calculating total molecules visit:
brainly.com/question/8933381
#SPJ4
Answer:

Explanation:
The pressure, the volume and the temperature of an ideal gas are related to each other by the equation of state:

where
p is the pressure of the gas
V is the volume of the gas
n is the number of moles
R is the gas constant
T is the absolute temperature
For the gas in this problem:
n = 2.00 mol is the number of moles
V = 17.4 L is the gas volume
p = 3.00 atm is the gas pressure
is the absolute temperature
Solving for R, we find the gas constant:

D. It is the heat required to change a gram of substance from a liquid to a gas.
Explanation:
The heat of vaporization is the heat required to change a gram of substance from a liquid to a gas.
- It is also known as the enthalpy of vaporization.
- The heat of vaporization is the quantity of heat needed to change one gram of a substance from liquid to gas.
- This heat of vaporization is dependent on the pressure conditions the process is taking place.
- Different liquids have their heat of vaporization.
learn more:
Heat of vaporization brainly.com/question/9529654
#learnwithBrainly
Answer:
10 moles de NO2
Explanation:
Tenemos la ecuación de la reacción como sigue;
N2 (g) + 2 O2 (g) → 2 NO2 (g)
Asi que;
Si 1 mol de nitrógeno produce 2 moles de NO2
5 moles de nitrógeno producirán 5 * 2/1 = 10
Por tanto, se producen 10 moles de NO2 moles
Answer:
The right answer is "60.56 atm".
Explanation:
As we know,
Vander wall's equation is:
⇒ 
or,
⇒ 
Here,
a = 3.59 L² atm mol⁻²
b = 0.0427 L mol⁻¹
By putting the values in the above equation, we get
⇒ 


