Answer:
model of mountain formation
Explanation:
The formation of mountains takes millions of years. This formation of mountains involves so much processes that do not occur quickly.
Hence, a model that can adequately show something that happens very slowly is the model for the formation of mountains.
Answer:
molar mass = 180.833 g/mol
Explanation:
- mass sln = mass solute + mass solvent
∴ solute: unknown molecular (nonelectrolyte)
∴ solvent: water
∴ mass solute = 17.5 g
∴ mass solvent = 100.0 g = 0.1 Kg
⇒ mass sln = 117.5 g
freezing point:
∴ ΔTc = -1.8 °C
∴ Kc H2O = 1.86 °C.Kg/mol
∴ m: molality (mol solute/Kg solvent)
⇒ m = ( - 1.8 °C)/( - 1.86 °C.Kg/mol)
⇒ m = 0.9677 mol solute/Kg solvent
- molar mass (Mw) [=] g/mol
∴ mol solute = ( m )×(Kg solvent)
⇒ mol solute = ( 0.9677 mol/Kg) × ( 0.100 Kg H2O )
⇒ mol solute = 0.09677 mol
⇒ Mw solute = ( 17.5 g ) / ( 0.09677 mol )
⇒ Mw solute = 180.833 g/mol
The first element discovered through synthesis was technetium<span>—its discovery being definitely confirmed in 1936. Hope that helps.</span>
Because you are never adding more than the substances created, nor are you creating any, but should a chemical reaction take place you could see the liquid change form into a gaseous state and that would result a loss of the liquid volume.
So to wrap it all up you can’t have more liquids than what is already there but you could always lose some due to a chemical change, hence the reason it says an open flask, the chemical change would not be collected, mass would be lost
Answer: Polar Easterlies
Explanation: Winds flow from high pressure areas to low pressure areas. They originate in the north and south pole creating high pressure zones which generates an outflow. This outflow is then directed from east to west and hence the term used to describe these winds is Polar Easterlies.