Answer:
3 moles of CO are needed
Explanation:
Given data:
Number of moles of CO used = ?
Mass of Fe produced = 112 g
Solution:
Chemical equation:
Fe₂O₃ + 3CO → 2Fe + 3CO₂
Number of moles of Fe:
Number of moles = mass/ molar mass
Number of moles = 112 g/ 55.85 g/mol
Number of moles = 2.00 mol
Now we will compare the moles of iron and CO.
Fe : CO
2 : 3
Thus, 3 moles of CO are needed.
Answer: Volume = 0.01L
Explanation:
The density of a substance is given by; Density = Mass / Volume.
In this question, Mass = 1000g, Volume = ? and Density = 100 Kg/L
For the units to be uniform, we convert 1000g to Kg = 1Kg
Therefore, Volume = Mass / Density = 1Kg / 100Kg/L = 0.01L
Answer:
The patented TRUE-TECH Self-Heating Technology is a simple combination of food grade iron and magnesium powder, salt, and water. When the contents of the water pouch are poured over the heater pad, the Food Heater releases enough heat to warm-up a pre-cooked meal 100 degrees Fahrenheit in approximately 10 minutes.
Explanation:
Answer:
pH = 2.69
Explanation:
The complete question is:<em> An analytical chemist is titrating 182.2 mL of a 1.200 M solution of nitrous acid (HNO2) with a solution of 0.8400 M KOH. The pKa of nitrous acid is 3.35. Calculate the pH of the acid solution after the chemist has added 46.44 mL of the KOH solution to it.</em>
<em />
The reaction of HNO₂ with KOH is:
HNO₂ + KOH → NO₂⁻ + H₂O + K⁺
Moles of HNO₂ and KOH that react are:
HNO₂ = 0.1822L × (1.200mol / L) = <em>0.21864 moles HNO₂</em>
KOH = 0.04644L × (0.8400mol / L) = <em>0.0390 moles KOH</em>
That means after the reaction, moles of HNO₂ and NO₂⁻ after the reaction are:
NO₂⁻ = 0.03900 moles KOH = moles NO₂⁻
HNO₂ = 0.21864 moles HNO₂ - 0.03900 moles = 0.17964 moles HNO₂
It is possible to find the pH of this buffer (<em>Mixture of a weak acid, HNO₂ with the conjugate base, NO₂⁻), </em>using H-H equation for this system:
pH = pKa + log₁₀ [NO₂⁻] / [HNO₂]
pH = 3.35 + log₁₀ [0.03900mol] / [0.17964mol]
<h3>pH = 2.69</h3>
Ice has a lower density than the density of water.