Answer:
-2.86x10³ kJ
Explanation:
The enthalpy of a reaction (ΔH) is defined as the heat produced or consumed by a reaction. In the reaction:
2 C₂H₆(g) + 7 O₂(g) → 4 CO₂(g) + 6 H₂O(g)
The ΔH is the heat envolved in the reaction per 2 moles of C₂H₆. 1.43x10³ kJ are involved when 1 mole reacts. Thus, when 2 moles react, involved heat is:
1.43x10³ kJ ₓ 2 = <em>2.86x10³ kJ</em>. As the reaction is a combustion reaction (Produce CO₂ and H₂O), the heat involved in the reaction is <em>PRODUCED, </em>that means ΔH is negative, <em>-2.86x10³ kJ</em>
Answer: The balanced equation for the complete oxidation reaction that occurs when methane (CH4) burns in air is
.
Explanation:
When a substance tends to gain oxygen atom in a chemical reaction and loses hydrogen atom then it is called oxidation reaction.
For example, chemical equation for oxidation of methane is as follows.

Number of atoms present on reactant side are as follows.
Number of atoms present on product side are as follows.
To balance this equation, multiply
by 2 on reactant side. Also, multiply
by 2 on product side. Hence, the equation can be rewritten as follows.

Now, the number of atoms present on reactant side are as follows.
Number of atoms present on product side are as follows.
Since, the atoms present on both reactant and product side are equal. Therefore, this equation is now balanced.
Thus, we can conclude that balanced equation for the complete oxidation reaction that occurs when methane (CH4) burns in air is
.
Answer:
ch3:-methanide
No2:-nitrogen dioxide
thank you and mark as brainliest if u find it helpful
Answer:
The energy profile for rotation about the C-C bond in ethane is shown in the image, along with the Newman projections of the corresponding ethane conformer.
Explanation:
If you see the ethane molecule (second image) from the C-C bond axis (third image), as in the Newman projections, it's easy to draw an angle between one of the hydrogen atoms of the visible carbon, the carbon itself, and one of the hydrogens of the hidden carbon.
When you make a rotation about the C-C bond, the angle between those hydrogens will change. If you start with an eclipsed conformation, with each hydrogen of the hidden C exactly behind the hydrogens of the visible C, the angle will be 0°, or also 120° or 240°, as this rotations will be equivalent. On the other hand, if the angle is 60° (or 180°, or 300°), you will have a staggered conformation. The eclipsed conformation is less stable than the staggered one, because the interactions between hydrogens will be bigger (the repulsion between their electrons), and because of that the eclipsed conformations will be found in the maxima, while the staggered one will be found in the minima.