No, he should place the He atom and energy on the right, and the H atoms and the heat and energy on the left.
We will apply the concept of period in a pendulum, defined as the product between 2
by the square root of the length over gravity, this is mathematically

Here,
T = Period
L = Length
g = Acceleration due to gravity
For the period to be 1 second, then we must look for the necessary length for such a requirement so




The meter's length would be slight less than one-fourth of its current length. Also, the number of significant digits depends only on how precisely we know g, because the time has been defined to be exactly 1s.
Therefore the correct answer is C.
Answer: 14.1 m/s
Explanation:
We can solve this with the Conservation of Linear Momentum principle, which states the initial momentum
(before the elastic collision) must be equal to the final momentum
(after the elastic collision):
(1)
Being:


Where:
is the combined mass of Tubby and Libby with the car
is the velocity of Tubby and Libby with the car before the collision
is the combined mass of Flubby with its car
is the velocity of Flubby with the car before the collision
is the velocity of Tubby and Libby with the car after the collision
is the velocity of Flubby with the car after the collision
So, we have the following:
(2)
Finding
:
(3)
(4)
Finally:
Answer:

Explanation:
We can assume this problem as two concentric spherical metals with opposite charges.
We have also to take into account the formulas for the electric field and the capacitance. Hence we have

Where k is the Coulomb's constant. Furthermore, by taking into account the expression for the potential and by integrating
![dV=Edr\\\\V=\int_{R_1}^{R_2}Edr=-\int_{R_1}^{R_2}\frac{kQ}{r^2}dr\\\\V=kQ[\frac{1}{R_2}-\frac{1}{R_1}]](https://tex.z-dn.net/?f=dV%3DEdr%5C%5C%5C%5CV%3D%5Cint_%7BR_1%7D%5E%7BR_2%7DEdr%3D-%5Cint_%7BR_1%7D%5E%7BR_2%7D%5Cfrac%7BkQ%7D%7Br%5E2%7Ddr%5C%5C%5C%5CV%3DkQ%5B%5Cfrac%7B1%7D%7BR_2%7D-%5Cfrac%7B1%7D%7BR_1%7D%5D)
Hence, the capacitance is
![C=\frac{1}{k[\frac{1}{R_2}-\frac{1}{R_1}]}](https://tex.z-dn.net/?f=C%3D%5Cfrac%7B1%7D%7Bk%5B%5Cfrac%7B1%7D%7BR_2%7D-%5Cfrac%7B1%7D%7BR_1%7D%5D%7D)
but R1=a and R2=b

HOPE THIS HELPS!!