Answer:
1.8 × 10⁻⁴ mol M/s
Explanation:
Step 1: Write the balanced reaction
2 Br⁻ ⇒ Br₂
Step 2: Establish the appropriate molar ratio
The molar ratio of Br⁻ to Br₂ is 2:1.
Step 3: Calculate the rate of appearance of Br₂
The rate of disappearance of Br⁻ at some moment in time was determined to be 3.5 × 10⁻⁴ M/s. The rate of appearance of Br₂ is:
3.5 × 10⁻⁴ mol Br⁻/L.s × (1 mol Br₂/2 mol Br⁻) = 1.8 × 10⁻⁴ mol Br₂/L.s
Answer:
1.58x10⁻⁵
2.51x10⁻⁸
0.0126
63.10
Explanation:
Phenolphthalein acts like a weak acid, so in aqueous solution, it has an acid form HIn, and the conjugate base In-, and the pH of it can be calculated by the Handerson-Halsebach equation:
pH = pKa + log[In-]/[HIn]
pKa = -logKa, and Ka is the equilibrium constant of the dissociation of the acid. [X] is the concentrantion of X. Thus,
i) pH = 4.9
4.9 = 9.7 + log[In-]/[HIn]
log[In-]/[HIn] = - 4.8
[In-]/[HIn] = 
[In-]/[HIn] = 1.58x10⁻⁵
ii) pH = 2.1
2.1 = 9.7 + log[In-]/[HIn]
log[In-]/[HIn] = -7.6
[In-]/[HIn] = 
[In-]/[HIn] = 2.51x10⁻⁸
iii) pH = 7.8
7.8 = 9.7 + log[In-]/[HIn]
log[In-]/[HIn] = -1.9
[In-]/[HIn] = 
[In-]/[HIn] = 0.0126
iv) pH = 11.5
11.5 = 9.7 + log[In-]/[HIn]
log[In-]/[HIn] = 1.8
[In-]/[HIn] = 
[In-]/[HIn] = 63.10
D. CuCl2 copper(2)chloride
The number of protons in the nucleus of the atom is equal to the atomic number (z) and the number of electrons in a neutral atom is equal to the number of protons
I believe the statement that is true of metals and metalloids is B. Metals are good conductors and metalloids are bad conductors.