Answer:
18.3%
Explanation:
Add the numbers together, and then take the number of grams of the substance, in this case copper, not coppper lol. divide the .45 by 2.45 to get 18.3
Cu + S ---> CuS
by reaction 1 mol 1 mol
from the problem 0.25 mol 0.25 mol
0.25 mol Cu
Answer:
incorporates both ionic bonding and covalent bonding.
Explanation:
A covalent bond is formed when an element shares its valence electron with another element. This bond is formed between two non metals.
An ionic bond is formed when an element completely transfers its valence electron to another element. The element which donates the electron is known as electropositive element and the element which accepts the electrons is known as electronegative element. This bond is formed between a metal and an non-metal.
For formation of a neutral ionic compound, the charges on cation and anion must be balanced. The cation is formed by loss of electrons by metals and anions are formed by gain of electrons by non metals.
Here potassium is having an oxidation state of +1 called as
cation and nitrate
is an anion with oxidation state of -1. Thus they combine and their oxidation states are exchanged and written in simplest whole number ratios to give neutral
.
is formed by sharing of electrons between two non metals nitrogen and oxygen.
Thus
incorporates both ionic bonding and covalent bonding.
Answer: 0.0220275 M
Explanation:
So, we are given the following data or parameters which are going to help in solving this particular Question/problem.
=> Averagely, we have the volume = 5.0 L of blood in human body .
=> Mass of sugar eaten = 37.7 g of sugar (sucrose, 342.30 g/mol).
Therefore, the molarity of the blood sugar change can be calculated as below:
The molarity of the blood sugar change = (1/ volume) × mass/molar mass.
Thus, the molarity of the blood sugar change = (1/5) × 37.7/342.30 = 0.0220275 M.
Answer & explanation:
Canned fruits and vegetables generally have a high acidity and salinity content, in order to prevent the product from spoiling, in addition to enhancing its flavor.
The cream-based sauce started to curdle due to the acidity present in the canned tomatoes.
By lowering the pH of dairy products, a protein in them called casein begins to clot. It is this clotting of the casein that causes the cream-based sauce to curdle.