Answer:
C
Explanation:
In thermodynamics, a exothermic system looses heat to the surroundings while an endothermic system absorbs heat from the surroundings.
A system is a part the universe marked off by a specified boundary. The contents of the cup constitutes the system in this case.
The region of space outside the system is called the surroundings. Hence everything outside the cup constitutes the surroundings.
The change in pH is calculated by:
pOH = Protein kinase B + log [NH4+]/ [NH3]
Protein kinase B of ammonia = 4.74
initial potential of oxygen hydroxide= 4.74 + log 0.100/0.100 = 4.74
pH = 14 - 4.74=9.26
moles NH4+ = moles NH3 = 0.100 L x 0.100 M = 0.0100
moles H+ added = 3.00 x 10^-3 L x 0.100 M=0.000300
NH3 + H+ = NH4+
moles NH3 = 0.0100 - 0.000300=0.00970
moles NH4+ = 0.0100 + 0.000300=0.0103
pOH = 4.74 + log 0.0103/ 0.00970= 4.77
oH = 14 - 4.77 = 9.23
the change is = 9.26 - 9.23 =0.03
<span> under extreme heat or pressure
crystallize from magma
precipitate from a solution reaction of hot mixture with water and a dissolved substance</span>
Answer:
D
Explanation:
The correct thing to do in this case would be to <u>repeat the experiment.</u>
The scientist would need to repeat the experiment in order to double-check the accuracy. If the accuracy is indeed doubtful, he/she can be able to trace the source of the error by repeating the experiment.
The correct option is D.
Answer:
A model is developed for predicting oxygen uptake, muscle blood flow, and blood chemistry changes under exercise conditions. In this model, the working muscle mass system is analyzed. The conservation of matter principle is applied to the oxygen in a unit mass of working muscle under transient exercise conditions. This principle is used to relate the inflow of oxygen carried with the blood to the outflow carried with blood, the rate of change of oxygen stored in the muscle myoglobin, and the uptake by the muscle. Standard blood chemistry relations are incorporated to evaluate venous levels of oxygen, pH, and carbon dioxide.
Explanation: