Answer:
(D) 0.99 cm
Explanation:
Given that the radius of curvature of the mirror is 25 cm.
And another car is following which is behind the mirror of 20 m.

Focal length is half of the radius of curvature and it is negative for convex lens.
Now the mirror formula.

So,

Now
Magnification is,

So,

So, Height of the image

Therefore, the image height is 0.99 cm.
Answer:
Part 1)

Part 2)

Part 3)

Part 4)
Since torque on right side is more so here it will turn and slip over it
Explanation:
As we know that the block A is placed at distance
d = 50 cm from the hinge at 70 cm mark
So torque due to weight of A is given as

the block B is placed at distance
d = 30 cm from the hinge at 70 cm mark
So torque due to weight of B is given as

Now torque due to weight of the scale is given as


now torque on left side of scale is given as


Torque on right Side is given as

Since torque on right side is more so here it will turn and slip over it
Answer:
Seatbelts stop you
Explanation:
Any passengers in the car will also be decelerated to rest if they are strapped to the car by seat belts.
Answer: 11,100 ft/s^2
1) Constant acceleration=> uniformly accelerated motion.
2) Formula for uniformly accelerated motion:
Vf = Vo + at
3) Data:
Vo = 1,100 ft/s
a = 1,000 ft/s^2
t = 10.0 s
4) Solution:
Vf = 1,100 ft/s + 1,000 ft/s^2 * 10.0 s = 1,100 ft/s + 10,000 ft/s
Vf = 11,100 ft/s