1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
WITCHER [35]
3 years ago
12

Helppppppp meee plsss

Mathematics
2 answers:
Trava [24]3 years ago
6 0

Answer:

Hypotenuse= 30.4

Step-by-step explanation:

14² + 27² = hypotenuse²

196 + 729 = hypotenuse²

925 = hypotenuse²

\sqrt{925} = hypotenuse

30.4 = hypotenuse

Hope this helps!

77julia77 [94]3 years ago
4 0
30.4 is the correct answer hope this helps
You might be interested in
A line passes through the point (10,-8) and has a slope of negative 3/2Write an equation in slope-intercept form for this line.
zhuklara [117]

Answer:

9383

Step-by-step explanation:

4 0
3 years ago
HELP ILL GIVE BRAINLIST
Serggg [28]

Answer:

$4.25

Step-by-step explanation:

Easy price is 85 so

Divide 85 by 100

0.85

then multiply by 5

0.85*5=4.25

Brainliest please and you're welcome

5 0
3 years ago
Using Laplace transforms, solve x" + 4x' + 6x = 1- e^t with the following initial conditions: x(0) = x'(0) = 1.
professor190 [17]

Answer:

The solution to the differential equation is

X(s)=\cfrac 1{6}  -\cfrac {1}{11}e^{t}+\cfrac {61}{66}e^{-2t}\cos(\sqrt 2t)+\cfrac {97}{66}\sqrt 2 e^{-2t}\sin(\sqrt 2t)

Step-by-step explanation:

Applying Laplace Transform will help us solve differential equations in Algebraic ways to find particular  solutions, thus after applying Laplace transform and evaluating at the initial conditions we need to solve and apply Inverse Laplace transform to find the final answer.

Applying Laplace Transform

We can start applying Laplace at the given ODE

x''(t)+4x'(t)+6x(t)=1-e^t

So we will get

s^2 X(s)-sx(0)-x'(0)+4(sX(s)-x(0))+6X(s)=\cfrac 1s -\cfrac1{s-1}

Applying initial conditions and solving for X(s).

If we apply the initial conditions we get

s^2 X(s)-s-1+4(sX(s)-1)+6X(s)=\cfrac 1s -\cfrac1{s-1}

Simplifying

s^2 X(s)-s-1+4sX(s)-4+6X(s)=\cfrac 1s -\cfrac1{s-1}

s^2 X(s)-s-5+4sX(s)+6X(s)=\cfrac 1s -\cfrac1{s-1}

Moving all terms that do not have X(s) to the other side

s^2 X(s)+4sX(s)+6X(s)=\cfrac 1s -\cfrac1{s-1}+s+5

Factoring X(s) and moving the rest to the other side.

X(s)(s^2 +4s+6)=\cfrac 1s -\cfrac1{s-1}+s+5

X(s)=\cfrac 1{s(s^2 +4s+6)} -\cfrac1{(s-1)(s^2 +4s+6)}+\cfrac {s+5}{s^2 +4s+6}

Partial fraction decomposition method.

In order to apply Inverse Laplace Transform, we need to separate the fractions into the simplest form, so we can apply partial fraction decomposition to the first 2 fractions. For the first one we have

\cfrac 1{s(s^2 +4s+6)}=\cfrac As + \cfrac {Bs+C}{s^2+4s+6}

So if we multiply both sides by the entire denominator we get

1=A(s^2+4s+6) +  (Bs+C)s

At this point we can find the value of A fast if we plug s = 0, so we get

1=A(6)+0

So the value of A is

A = \cfrac 16

We can replace that on the previous equation and multiply all terms by 6

1=\cfrac 16(s^2+4s+6) +  (Bs+C)s

6=s^2+4s+6 +  6Bs^2+6Cs

We can simplify a bit

-s^2-4s=  6Bs^2+6Cs

And by comparing coefficients we can tell the values of B and C

-1= 6B\\B=-1/6\\-4=6C\\C=-4/6

So the separated fraction will be

\cfrac 1{s(s^2 +4s+6)}=\cfrac 1{6s} +\cfrac {-s/6-4/6}{s^2+4s+6}

We can repeat the process for the second fraction.

\cfrac1{(s-1)(s^2 +4s+6)}=\cfrac A{s-1} + \cfrac {Bs+C}{s^2+4s+6}

Multiplying by the entire denominator give us

1=A(s^2+4s+6) + (Bs+C)(s-1)

We can plug the value of s = 1 to find A fast.

1=A(11) + 0

So we get

A = \cfrac1{11}

We can replace that on the previous equation and multiply all terms by 11

1=\cfrac 1{11}(s^2+4s+6) + (Bs+C)(s-1)

11=s^2+4s+6 + 11Bs^2+11Cs-11Bs-11C

Simplifying

-s^2-4s+5= 11Bs^2+11Cs-11Bs-11C

And by comparing coefficients we can tell the values of B and C.

-s^2-4s+5= 11Bs^2+11Cs-11Bs-11C\\-1=11B\\B=-\cfrac{1}{11}\\5=-11C\\C=-\cfrac{5}{11}

So the separated fraction will be

\cfrac1{(s-1)(s^2 +4s+6)}=\cfrac {1/11}{s-1} + \cfrac {-s/11-5/11}{s^2+4s+6}

So far replacing both expanded fractions on the solution

X(s)=\cfrac 1{6s} +\cfrac {-s/6-4/6}{s^2+4s+6} -\cfrac {1/11}{s-1} -\cfrac {-s/11-5/11}{s^2+4s+6}+\cfrac {s+5}{s^2 +4s+6}

We can combine the fractions with the same denominator

X(s)=\cfrac 1{6s}  -\cfrac {1/11}{s-1}+\cfrac {-s/6-4/6+s/11+5/11+s+5}{s^2 +4s+6}

Simplifying give us

X(s)=\cfrac 1{6s}  -\cfrac {1/11}{s-1}+\cfrac {61s/66+158/33}{s^2 +4s+6}

Completing the square

One last step before applying the Inverse Laplace transform is to factor the denominators using completing the square procedure for this case, so we will have

s^2+4s+6 = s^2 +4s+4-4+6

We are adding half of the middle term but squared, so the first 3 terms become the perfect  square, that is

=(s+2)^2+2

So we get

X(s)=\cfrac 1{6s}  -\cfrac {1/11}{s-1}+\cfrac {61s/66+158/33}{(s+2)^2 +(\sqrt 2)^2}

Notice that the denominator has (s+2) inside a square we need to match that on the numerator so we can add and subtract 2

X(s)=\cfrac 1{6s}  -\cfrac {1/11}{s-1}+\cfrac {61(s+2-2)/66+316 /66}{(s+2)^2 +(\sqrt 2)^2}\\X(s)=\cfrac 1{6s}  -\cfrac {1/11}{s-1}+\cfrac {61(s+2)/66+194 /66}{(s+2)^2 +(\sqrt 2)^2}

Lastly we can split the fraction one more

X(s)=\cfrac 1{6s}  -\cfrac {1/11}{s-1}+\cfrac {61(s+2)/66}{(s+2)^2 +(\sqrt 2)^2}+\cfrac {194 /66}{(s+2)^2 +(\sqrt 2)^2}

Applying Inverse Laplace Transform.

Since all terms are ready we can apply Inverse Laplace transform directly to each term and we will get

\boxed{X(s)=\cfrac 1{6}  -\cfrac {1}{11}e^{t}+\cfrac {61}{66}e^{-2t}\cos(\sqrt 2t)+\cfrac {97}{66}\sqrt 2 e^{-2t}\sin(\sqrt 2t)}

6 0
3 years ago
Find the slope of the line (12,-18), (11,12)
telo118 [61]

Answer:

-30

Step-by-step explanation:

To find slope, subtract two y's and then subtract the x's in the same order.

<u>12-(-18)</u>=<u>30</u>=-30

11-12       -1

You could also switch the order like this...

<u>-18-12</u>=<u>-30</u>=-30

12-11      1

As you can see, both of the ways of solving for slope resulted in -30.

Hope this helps!! Have a great day :3

4 0
3 years ago
Find the volume and surface area of this shape
DiKsa [7]

Answer:

171.65

Step-by-step explanation:

A=2AB+(a+b+c)h

AB=s(s﹣a)(s﹣b)(s﹣c)

s=a+b+c

2

Solving forA

A=ah+bh+ch+1

2﹣a4+2(ab)2+2(ac)2﹣b4+2(bc)2﹣c4=5·10+5·10+5·10+1

2·﹣54+2·(5·5)2+2·(5·5)2﹣54+2·(5·5)2﹣54≈171.65064

7 0
2 years ago
Read 2 more answers
Other questions:
  • The standard unit for measurement for volume is
    12·1 answer
  • MARKING BRAINLIEST I NEED HELPPPPP ASAPPPPP
    10·1 answer
  • I need to model 2 equivalent fractions for 6 fifths
    6·1 answer
  • Question 5
    6·2 answers
  • How much is f(10) if f=x^2-2
    12·1 answer
  • Name three fractions between 1/2 and 1
    12·2 answers
  • what is the absolute value of -8? Use the number line to help anwser the question HELP MEEEE A: -16. B= -8 C= 8 D= 16
    12·1 answer
  • Plz help me as soon as possible! Thank you
    7·2 answers
  • A card is selected from a standard deck of 52 cards . what are the odds of selecting a red 9 ?
    7·2 answers
  • What is 174 divided by 74
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!