Molybdenum in periodic table
or
Molarity definition
Answer:
In the n = 3 energy level
Explanation:
There's is no further explanation for this.
All the electrons in an energy level are distribuited according to the period in the periodic table they are.
So, if we have an atom in period 1, like Hydrogen (H), that atom would only have 1 level energy (n = 1) and in that level, we only have the sub level 1s.
Electrons in the 3d sublevel, are found mostly in all the transition metals of period 3, and it can go from 1 to 10 electrons. To be with the 3d sub level it's neccesary that the energy level to be 3.
energy levels beyond that, like n = 4, we have electrons occupying the 3d sub level, so, primordly, the 3d is found only in energy level 3.
Hope this helps
Answer:
There is 54.29 % sample left after 12.6 days
Explanation:
Step 1: Data given
Half life time = 14.3 days
Time left = 12.6 days
Suppose the original amount is 100.00 grams
Step 2: Calculate the percentage left
X = 100 / 2^n
⇒ with X = The amount of sample after 12.6 days
⇒ with n = (time passed / half-life time) = (12.6/14.3)
X = 100 / 2^(12.6/14.3)
X = 54.29
There is 54.29 % sample left after 12.6 days
The half life for C14 is 5730 years.
We assume that Carbon 14/ Carbon 12 ratio was steady for living organisms over time, the problem is actually telling us that

= 0.0725 =

ˣ
Take the natural logarithm and In on both sides.
ln(0.725) = ln

ˣ
= - 0.3216 = xln (

= -0.6931x.
So x = (-.3216) / (-0.6931) = 0.464
or
t/t₁/₂ = 0.464
So t = 0.464 x t₁/₂ = 0.464 * 5730 yrs = 2660 years.
Answer:
a. The student performed the splint test incorrectly. He should of observed a popping sound when the splint was placed in the test tube.
Explanation:
It is given that a student performed an experiment where he dropped a nickel metal in to HCl solution. He observed the reaction and performed a splint test in the test tube that is filled with a gas which is formed while Nickle is dropped into the solution of HCl.
But the experiment that the student performed was incorrect. He must have observed the popping sound when the splint was placed in the test tube.
When the splint was added to the gas splint flared up. The hydrogen gas pops out when exposed to the flame.

Thus the correct option is (a).