1. A rock is a solid formation occurs naturally in earth
2. A mineral is a chemical composition
3. Idk srry
Answer:
New temperature t2 = [1.28T− 273.15]° C
Explanation:
Given:
Volume v1 = 25 gram
New volume v2 = 25 + 7 = 32 gram
Constant pressure = p
Temperature t1 = T
Find:
New temperature t2
Computation:
Pv1/t1 = Pv2/t2
25 / T = 32 / t2
t2 = 1.28T
New temperature t2 = [1.28T− 273.15]° C
Answer:
-21 kJ·mol⁻¹
Explanation:
Data:
H₃O⁺ + OH⁻ ⟶ 2H₂O
V/mL: 50 50
c/mol·dm⁻³: 1.0 1.0
ΔT = 4.5 °C
C = 4.184 J·°C⁻¹g⁻¹
C_cal = 50 J·°C⁻¹
Calculations:
(a) Moles of acid
So, we have 0.050 mol of reaction
(b) Volume of solution
V = 50 dm³ + 50 dm³ = 100 dm³
(c) Mass of solution
(d) Calorimetry
There are three energy flows in this reaction.
q₁ = heat from reaction
q₂ = heat to warm the water
q₃ = heat to warm the calorimeter
q₁ + q₂ + q₃ = 0
nΔH + mCΔT + C_calΔT = 0
0.050ΔH + 100×4.184×4.5 + 50×4.5 = 0
0.050ΔH + 1883 + 225 = 0
0.050ΔH + 2108 = 0
0.050ΔH = -2108
ΔH = -2108/0.0500
= -42 000 J/mol
= -42 kJ/mol
This is the heat of reaction for the formation of 2 mol of water
The heat of reaction for the formation of mol of water is -21 kJ·mol⁻¹.
What are the statements ?
Complete Question
The complete question is shown on the first uploaded image
Answer:
The concentration equilibrium constant is
Explanation:
The chemical equation for this decomposition of ammonia is
↔
The initial concentration of ammonia is mathematically represented a
The initial concentration of nitrogen gas is mathematically represented a
So looking at the equation
Initially (Before reaction)
During reaction(this is gotten from the reaction equation )
(this implies that it losses two moles of concentration )
(this implies that it gains 1 moles)
(this implies that it gains 3 moles)
Note : x denotes concentration
At equilibrium
Now since
Now the equilibrium constant is
substituting values