Answer:
f = 7.97 x 10⁶ Hz = 7.97 MHz
Explanation:
The speed of a wave is given by the following formula:

where,
v = speed of the ultrasound wave through human tissue = 1540 m/s
f = frequency of ultrasound wave required = ?
λ = wavelength of ultrasound waves = smallest detail required = 0.193 mm
λ = 0.193 mm = 1.93 x 10⁻⁴ m
Therefore,
<u>f = 7.97 x 10⁶ Hz = 7.97 MHz</u>
Answer:
1.76m/s²
Explanation:
Given parameters:
Initial velocity = 0m/s
Final velocity = 65m/s
Distance traveled = 1200m
Unknown:
Acceleration = ?
Solution:
This is linear velocity and we apply the appropriate motion equation to solve this problem.
V² = U² + 2as
S is the distance
u is the initial velocity
V is the final velocity
a is the acceleration
Now, insert the parameters and solve;
65² = 0² + 2 x a x 1200
4225 = 2400a
a = 1.76m/s²
Answer:
Push or Pull Forces - example
When you push against a wall the force that you exert is an example of a push force. When you pull a trolley car the force that you exert is an example of pull force.
<h2><u>Answer:</u></h2>
Accordingly, when our Sun comes up short on hydrogen fuel, it will grow to end up a red monster, puff off its external layers, and after that settle down as a minimal white small star, at that point gradually chilling off for trillions of years.
All incredible, in the long run — in around 5 billion years — our sun will, as well. When its supply of hydrogen is depleted, the last, sensational phases of its life will unfurl, as our host star extends to wind up a red goliath and afterward shreds its body to consolidate into a white smaller person