Answer:
437 J
Explanation:
Parameters given:
Weight of child, W = 230 N
Height of swing, h = 1.9 m
Gravitational Potential Energy is given as:
P. E. = m*g*h = W*h
m = mass
h = height above the ground
W = weight
P. E. = 230 * 1.9
P. E. = 437 J
Answer: 
Explanation:
Given
Cross-sectional area of wire 
Extension of wire 
Extension in a wire is given by

where, 

for same force, length and material

Divide (i) and (ii)

Steel paper clip because it can be moved by the magnet and it is lighter than the iron nail
Answer:
the answer is
Explanation:For equilibrium
Weight = Tension
mg=T
∴T=4×3.1π=12.4πN (as can be inferred from the question)
Y=
△l/l
T/A
=
1000
0.031
/20
12.4π/π(
1000
2
)
2
=
4×0.031
12.4×20×1000×(1000)
2
=2×10
12
N/m
2
most fossils are found in sedimentary rocks