1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oksanka [162]
3 years ago
10

A bug is 12 cm from the center of a turntable that is rotating with a frequency of 45 rev/min . What minimum coefficient frictio

n is required so that the bug stays on the turntable?
Physics
1 answer:
Agata [3.3K]3 years ago
3 0

Answer:

The minimum coefficient of friction is 0.27.

Explanation:

To solve this problem, start with identifying the forces at play here. First, the bug staying on the rotating turntable will be subject to the centripetal force constantly acting toward the center of the turntable (in absence of which the bug would leave the turntable in a straight line). Second, there is the force of friction due to which the bug can stick to the table. The friction force acts as an intermediary to enable the centripetal acceleration to happen.

Centripetal force is written as

F_c = m\frac{v^2}{r}

with v the linear velocity and r the radius of the turntable. We are not given v, but we can write it as

v = r\omega

with ω denoting the angular velocity, which we are given. With that, the above becomes:

F_c = m\frac{v^2}{r}=m\omega^2 r

Now, the friction force must be at least as much (in magnitude) as Fc. The coefficient (static) of friction μ must be large enough. How large?

F_r=\mu mg \geq m\omega^2 r = F_c\implies\\\mu \geq \frac{\omega^2 r}{g}

Let's plug in the numbers. The angular velocity should be in radians per second. We are given rev/min, which can be easily transformed by a factor 2pi/60:

\frac{1 rev}{1 min}\cdot\frac{\frac{2\pi rad}{rev}}{\frac{60s}{1 min}}=\frac{2\pi}{60}\frac{rad}{s}

and so 45 rev/min = 4.71 rad/s.

\mu \geq \frac{\omega^2 r}{g}=\frac{4.71^2\frac{1}{s^2}\cdot 0.12m}{9.8\frac{m}{s^2}}=0.27

A static coefficient of friction of at least be 0.27 must be present for the bug to continue enjoying the ride on the turntable.



You might be interested in
A coin released at rest from the top of a tower hits the ground after falling 5.7 s. What is the speed of the coin as it hits th
Bad White [126]

Given parameters:

Initial velocity of Coin = 0m/s

Time taken before coin hits ground  = 5.7s

Unknown:

Final velocity of the coin  = ?

Velocity is displacement with time. To solve this problem, we have to apply one of the equations of motion.

The fitting one of them here is shown below;

             V = U + gt

where;

V is the final velocity

U is the initial velocity

g is the acceleration due to gravity

t is the time taken

Here we use positive value of acceleration due to gravity because the coin is falling with the effect of acceleration and not against it.

Now input the parameters and solve;

               V  = 0 + 9.81 x 5.7

               V = 55.917m/s

Therefore, the final velocity is 55.917m/s.

8 0
3 years ago
Why might an electromagnet be used to pick up old cars in junkyards?
siniylev [52]
B) Hope it helps ,Have a nice day :)
7 0
3 years ago
Read 2 more answers
A 10 ohms resistor is powered by a 5-V battery. The current flowing<br> through the source is:
mario62 [17]
  • Resistance=R=10ohm
  • Voltage=V=5V
  • Current=I

Applying ohm's law

\\ \sf\longmapsto \dfrac{V}{I}=R

\\ \sf\longmapsto I=\dfrac{V}{R}

\\ \sf\longmapsto I=\dfrac{5}{10}

\\ \sf\longmapsto I=0.5A

4 0
2 years ago
What is a conclusion?
Vikki [24]
The end or finish of an event or process.
8 0
2 years ago
Read 2 more answers
A 3.45-kg centrifuge takes 100 s to spin up from rest to its final angular speed with constant angular acceleration. A point loc
Dafna11 [192]

Answer:

(a) 18.75 rad/s²

(b) 14920.78 rev

Explanation:

(a)

First we find the acceleration of the centrifuge using,

a = (v-u)/t......................... Equation 1

Where v = final velocity, u = initial velocity, t = time.

Given: v = 150 m/s,  u = 0 m/s ( from rest), t = 100 s

Substitute into equation 1

a = (150-0)/100

a = 1.5 m/s²

Secondly we calculate for the angular acceleration using

α = a/r..................... Equation 2

Where α = angular acceleration, r = radius of the centrifuge

Given: a = 1.5 m/s², r = 8 cm = 0.08 m

substitute into equation 2

α = 1.5/0.08

α = 18.75 rad/s²

(b)

Using,

Ф = (ω'+ω).t/2........................... Equation 3

Where Ф = number of revolution of the centrifuge, ω' = initial angular velocity, ω = Final angular velocity.

But,

ω = v/r and ω' = u/r

therefore,

Ф = (u/r+v/r).t/2

where u = 0 m/s (at rest),  = 150 m/s, r = 0.08 m, t = 100 s

Ф = [(0/0.08)+(150/0.08)].100/2

Ф = 93750 rad

If,

1 rad = 0.159155 rev,

Ф = (93750×0.159155) rev

Ф = 14920.78 rev

6 0
3 years ago
Other questions:
  • In order to be considered science, a body of knowledge must be
    9·2 answers
  • Hot coffee in a mug cools over time and the mug warms up. Which describes the energy in this system?
    11·2 answers
  • En Argentina en que deportes se realizan controles de doping
    11·1 answer
  • A 0.500 kg ball is dropped from rest at a point 1.20 m above the floor. The ball rebounds straight upward to a height of 0.700 m
    15·1 answer
  • What exactly does it mean to say an object is polarized
    8·1 answer
  • Regardless of their frequency, wavelength, or energy, all electromagnetic waves: A. travel only through the vacuum of space. B.
    5·1 answer
  • Me amor
    13·1 answer
  • If a lawn mower is pushed with a distance of 30 meters and 12N-m of work is exerted, calculate the force.
    7·1 answer
  • A 20 kg cart moving at 4 m/s has how much momentum?
    5·1 answer
  • When we jump off a boat towards the shore the boat moves back why​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!