1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oksanka [162]
3 years ago
10

A bug is 12 cm from the center of a turntable that is rotating with a frequency of 45 rev/min . What minimum coefficient frictio

n is required so that the bug stays on the turntable?
Physics
1 answer:
Agata [3.3K]3 years ago
3 0

Answer:

The minimum coefficient of friction is 0.27.

Explanation:

To solve this problem, start with identifying the forces at play here. First, the bug staying on the rotating turntable will be subject to the centripetal force constantly acting toward the center of the turntable (in absence of which the bug would leave the turntable in a straight line). Second, there is the force of friction due to which the bug can stick to the table. The friction force acts as an intermediary to enable the centripetal acceleration to happen.

Centripetal force is written as

F_c = m\frac{v^2}{r}

with v the linear velocity and r the radius of the turntable. We are not given v, but we can write it as

v = r\omega

with ω denoting the angular velocity, which we are given. With that, the above becomes:

F_c = m\frac{v^2}{r}=m\omega^2 r

Now, the friction force must be at least as much (in magnitude) as Fc. The coefficient (static) of friction μ must be large enough. How large?

F_r=\mu mg \geq m\omega^2 r = F_c\implies\\\mu \geq \frac{\omega^2 r}{g}

Let's plug in the numbers. The angular velocity should be in radians per second. We are given rev/min, which can be easily transformed by a factor 2pi/60:

\frac{1 rev}{1 min}\cdot\frac{\frac{2\pi rad}{rev}}{\frac{60s}{1 min}}=\frac{2\pi}{60}\frac{rad}{s}

and so 45 rev/min = 4.71 rad/s.

\mu \geq \frac{\omega^2 r}{g}=\frac{4.71^2\frac{1}{s^2}\cdot 0.12m}{9.8\frac{m}{s^2}}=0.27

A static coefficient of friction of at least be 0.27 must be present for the bug to continue enjoying the ride on the turntable.



You might be interested in
A car travels a distance of 320 km in 4 hours. What is your average speed in meters per second?
Andreas93 [3]

Answer:

22.2 m/s

Explanation:

First, we need to convert km to m by multiplying by 1000. This means that the car traveled 320 000 meters.

Next, we convert hours to minutes by multiplying by 3600 (the number of seconds in an hour). This means that overall, the car traveled 320 000 m in 14 400 seconds.

The average speed can be found by using the equation \frac{distance}{time}. After substitution, this gives the fraction \frac{320 000}{14 400}, which reduces to 22 \frac{2}{9} m/s, or about 22.2 m/s.

4 0
4 years ago
You are at the edge of a diving board that is 9 meters above the water. If you weigh 500 Newtons, what is your potential energy?
Semenov [28]

Answer:

4500 J

Explanation:

First, let's define some equations and derivations.

Our potential energy formula is:

  • \displaystyle U = mgh

Where <em>m </em>is mass (in kg), <em>g</em> is the gravitational constant (in m/s²), and <em>h</em> is height (in m).

We also know that <em>mg</em> is equal to the weight of an object (in N), from Newton's 2nd Law of Motion: F = ma (Force is equal to [constant] mass times acceleration).

Therefore, we can simply substitute force into the equation:

  • \displaystyle U = Fh

Where <em>F</em> is the force (in N) and <em>h</em> is still height (in m).

Now we can calculate the amount of potential energy in our system, measured in joules.

Substitute in the given variables, F = 500 N and h = 9 m:

  • \displaystyle U = (500 \ N)(9 \ m)

Using simple Pre-Algebra rules, we find that:

  • \displaystyle U = 4500 \ J

This tells us that the we have 4500 joules of potential energy when I am 9 meters above the water on the edge of the diving board.

6 0
3 years ago
Read 2 more answers
KIIS FM broadcasts at 102.7 MHz, what is the wavelength of that radio wave?
marysya [2.9K]

Answer:

2.92 m

Explanation:

As we know, frequency × Wavelength = Speed of light

so here frequency of 102.7 MHz can be written as 102.7× 10⁶ Hz..

So Lambda (wavelength) = 3×10⁸/ 102.7 × 10⁶ which gives 2.92 metres or 2.92 × 10¹⁰ Å

3 0
3 years ago
What is energy? a change that appears in an object when force is applied the property of a body that gives it mass the amount of
alexandr402 [8]
<span>Energy exists as light, heat, sound, mass, moving objects, gravity, fuel, chemicals, and electricity.</span>
6 0
3 years ago
Read 2 more answers
Which of the following describes the way heat is transferred in a geyser?
Iteru [2.4K]

Answer:

Heat is transferred by the hot air or water moving to a cooler area. The elements rotate in circular motions, giving the geyser pressure.

5 0
3 years ago
Other questions:
  • Puzzle 3
    5·1 answer
  • An object with a mass of 78 kg is lifted through a height of 6 meters how much work is done
    8·1 answer
  • A 600-kg car traveling at 30.0 m/s is going around a curve having a radius of 120 m that is banked at an angle of 25.0°. The coe
    13·2 answers
  • Thermograms are infrared photograms that show emission of infrared radiation emitted from objects. If you lived in a cold climat
    5·1 answer
  • What happens to the velocity of a sound wave in air if the temperature of the air increases?
    13·2 answers
  • Insight therapies involve verbal interactions between a therapist and a client that are used to promote positive changes in one'
    5·2 answers
  • The process of cytokinesis is different in plant and animal cells. What structure is needed for a plant cell to go through cytok
    12·1 answer
  • A vector is 14.4 m long and
    8·1 answer
  • How much did the pressure drop in the storm's center from November 9, 1200z, until November 11, 0000z
    9·1 answer
  • 1) A rock is dropped from a cliff with a height of 200 m. With what velocity will the rock hit the ground
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!