If the Kelvin
temperature of a gas is doubled, the volume of the gas will increase by two. It
follows Charles law where in for a mixed gas of mass, the volume is directly
proportional to the temperature at constant pressure.
volume of H₂O = 7.2 L
Explanation:
The combustion reaction of methane (CH₄):
CH₄ + 2 O₂ → CO₂ + 2 H₂O
Now we calculate the number of moles of methane using the following formula:
number of moles = volume / 22.4 (L/mole)
number of moles of CH₄ = 3.6 / 22.4
number of moles of CH₄ = 0.16 moles
Taking in account the chemical reaction, we devise the following reasoning:
if 1 mole of CH₄ produce 2 moles of H₂O
then 0.16 moles of CH₄ produce X moles of H₂O
X = (0.16 × 2) / 1 = 0.32 moles of H₂O
And now we can calculate the volume of water (H₂O) produced by the reaction:
number of moles = volume / 22.4 (L/mole)
volume = number of moles × 22.4 (L/mole)
volume of H₂O = 0.32 × 22.4
volume of H₂O = 7.2 L
Learn more about:
combustion reaction
brainly.com/question/14122510
#learnwithBrainly
Explanation:
Reaction equation:
CO + 2H₂ → CH₃OH
All the species are in gaseous state and the equation is balanced.
Change in pressure only affects equilibrium involving a gas or gases.
Based on Le Chatelier's principle, an increase in pressure will shift the position of equilibrium to the side having smaller volume or number of moles and vice versa.
CO + 2H₂ → CH₃OH
3moles of gases 1 mole of gas
An increase in pressure favors the forward reaction. A decrease in pressure will favor the backward step.