Answer:
Explanation:
Kinetic energy at the height = 1/2 m v²
= 1/2 x 750 x 20²
= 150000 J
Its potential energy = mgh
= 750 x 9.8 x 5
=36750 J
Total energy = 186750 J
Its total kinetic energy will be equal to 186750 J , according to conservation of mechanical energy
If v be its velocity at the bottom
1/2 m v² = 186750
v = √498
= 22.31 m /s
Answer:
Explanation:
Displacement can be displayed as a vector, this because it has magnitud and direction. Because of this, we can think John's Resultant Displacement as the join of this two vectors.
The First Vector is from the 249 Km Marker to the 141 Km Marker, which give us a Vector with a Magnitude equals to 108 Km.
The Second Vector goes from 141 Km Marker to the 174 Km Marker, which give us a Vector with a Magnitude equals to 33 Km.
However is important to know the direction for each Vector, we notice that John was traveling on one direction and then he returned. This makes our Vector to have a different direction, and this means difference signs. Difference signs means substraction. So, the Third Vector will be:
Third Vector = 108 Km - 33 Km
Third Vector = 75 Km
Answer:
0.0003 m = 0.3 mm
Explanation:
For constructive interference in the Young's experiment.
The position of the mth fringe from the central fringe is given by
y = L(mλ/d)
λ = wavelength = 720 nm = 720 × 10⁻⁹ m
L = distance between slits and screen respectively = 1.0 m
d = separation of slits = 0.68 mm = 0.68 × 10⁻³ m
m = 2
y = 1(2 × 720 × 10⁻⁹/(0.68 × 10⁻³) = 0.00212 m = 2.12 mm
For the 620 nm light,
y = 1(2 × 620 × 10⁻⁹/(0.68 × 10⁻³) = 0.00182 m = 1.82 mm
Distance apart = 2.12 - 1.82 = 0.3 mm = 0.0003 m
Answer:
110.4 v
Explanation:
Find the equivalent resistance of the two parallel circuits
R1 and R2 in parallel = R1 * R2 / (R1+ R2) = <u>1 ohm </u>
similarly R4 and R5 = <u>4.77 ohms</u>
Now you can add the three resistances into one (R3=10)
1 ohm + 10 ohm + 4.77 ohm = 15.77 ohms
Now
V = IR
V = 7 amps * 15.77 ohm = 110.4 v