Answer:
Explanation:
<u>1. Name of the variables:</u>

<u>2. Formulae:</u>




<u>3. Solution (calculations)</u>




Answer:
6400 m
Explanation:
You need to use the bulk modulus, K:
K = ρ dP/dρ
where ρ is density and P is pressure
Since ρ is changing by very little, we can say:
K ≈ ρ ΔP/Δρ
Therefore, solving for ΔP:
ΔP = K Δρ / ρ
We can calculate K from Young's modulus (E) and Poisson's ratio (ν):
K = E / (3 (1 - 2ν))
Substituting:
ΔP = E / (3 (1 - 2ν)) (Δρ / ρ)
Before compression:
ρ = m / V
After compression:
ρ+Δρ = m / (V - 0.001 V)
ρ+Δρ = m / (0.999 V)
ρ+Δρ = ρ / 0.999
1 + (Δρ/ρ) = 1 / 0.999
Δρ/ρ = (1 / 0.999) - 1
Δρ/ρ = 0.001 / 0.999
Given:
E = 69 GPa = 69×10⁹ Pa
ν = 0.32
ΔP = 69×10⁹ Pa / (3 (1 - 2×0.32)) (0.001/0.999)
ΔP = 64.0×10⁶ Pa
If we assume seawater density is constant at 1027 kg/m³, then:
ρgh = P
(1027 kg/m³) (9.81 m/s²) h = 64.0×10⁶ Pa
h = 6350 m
Rounded to two sig-figs, the ocean depth at which the sphere's volume is reduced by 0.10% is approximately 6400 m.
Answer:
True
Explanation:
Buoyancy is the most important factors for divers. All they do underwater is to observe the life down there but they also have some other work. However, divers may want to be negatively buoyant when they want to go on deep exploration. When they reach a destination, they may want to observe and neutral buoyancy then will be useful. When they want to go back on surface, they’ll utilize positive buoyancy.
Answer:
yes
Explanation:
the force is multiplied by the levers length of the handle
Answer:
the answer is 32.0-25.0=7
Explanation:
the absolute pressure at the bottom of the container is 7