1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Volgvan
3 years ago
7

As mentioned, electric fields are extremely interconnected with magnetic fields and these two types of force can travel together

in perpendicular vibrations known as:
Physics
2 answers:
DIA [1.3K]3 years ago
6 0

Those would be electromagnetic waves.

Nady [450]3 years ago
4 0

Answer: I think the answer is a wave/ a transverse wave, or electromagnetic waves as well.

You might be interested in
In an RC circuit, what fraction of the final energy is stored in an initially uncharged capacitor after it has been charging for
4vir4ik [10]

Answer:

The  fraction fraction of the final energy is stored in an initially uncharged capacitor after it has been charging for 3.0 time constants is  

      k  = 0.903

Explanation:

From the question we are told that

     The time  constant  \tau  =  3

The potential across the capacitor can be mathematically represented as

     V  =  V_o  (1 -  e^{- \tau})

Where V_o is the voltage of the capacitor when it is fully charged

    So   at  \tau  =  3

     V  =  V_o  (1 -  e^{- 3})

     V  =  0.950213 V_o

   Generally energy stored in a capacitor is mathematically represented as

             E = \frac{1}{2 } * C  * V ^2

In this equation the energy stored is directly proportional to the the square of the potential across the capacitor

Now  since capacitance is  constant  at  \tau  =  3

        The  energy stored can be evaluated at as

         V^2 =  (0.950213 V_o )^2

       V^2 =  0.903  V_o ^2

Hence the fraction of the energy stored in an initially uncharged capacitor is  

      k  = 0.903

4 0
3 years ago
A baseball with a mass of 0.80 kg is given an acceleration of 20.00 m/s. How much net force was applied to the ball
dybincka [34]

a x m = f

.80 x 20 = 16

4 0
3 years ago
Suppose that you can throw a projectile at a large enough v0 so that it can hit a target a distance R downrange. Given that you
NikAS [45]

Answer:

Theta1 = 12° and theta2 = 168°

The solution procedure can be found in the attachment below.

Explanation:

The Range is the horizontal distance traveled by a projectile. This diatance is given mathematically by Vo cos(theta) t. Where t is the total time of flight of the projectile in air. It is the time taken for the projectile to go from starting point to finish point. This solution assumes the projectile finishes uts motion on the same horizontal level as the starting point and as a result the vertical displacement is zero (no change in height).

In the solution as can be found below, the expression to calculate the range for any launch angle theta was first derived and then the required angles calculated from the equation by substituting the values of the the given quantities.

7 0
3 years ago
In an engine, an almost ideal gas is compressed adiabatically to half its volume. In doing so, 1850 J of work is done on the gas
hammer [34]

Answer:

The value of change in internal energy of the gas = + 1850 J

Explanation:

Work done on the gas (W) =  - 1850 J

Negative sign is due to work done on the system.

From the first law  we know that Q = Δ U + W ------------- (1)

Where Q = Heat transfer to the gas

Δ U = Change in internal energy of the gas

W = work done on the gas

Since it is adiabatic compression of the gas so heat transfer to the gas is zero.

⇒ Q = 0

So from equation (1)

⇒ Δ U = - W ----------------- (2)

⇒ W = - 1850 J (Given)

⇒ Δ U = - (- 1850)

⇒ Δ U = + 1850 J

This is the value of change in internal energy of the gas.

7 0
3 years ago
Light travels faster in warmer air. On a sunny day, the sun can heat a road and create a layer of hot air above it. Let's model
AysviL [449]

Answer:

Explanation:

If we assume there is a sharp boundary between the two masses of air, there will be a refraction. The refractive index of each medium will depend on the relative speeds of light.

n = c / v

If light travels faster in warmer air, it will have a lower refractive index

nh < nc

Snell's law of refraction relates angles of incidence and refracted with the indexes of refraction:

n1 * sin(θ1) = n2 * sin(θ2)

sin(θ2) = sin(θ1) * n1/n2

If blue light from the sky passing through the hot air will cross to the cold air, then

n1 = nh

n2 = nc

Then:

n1 < n2

So:

n1/n2 < 1

The refracted light will come into the cold air at angle θ2 wich will be smaller than θ1, so the light is bent upwards, creating the appearance of water in the distance, which is actually a mirror image of the sky.

6 0
3 years ago
Other questions:
  • 40 POINTS
    12·2 answers
  • which part of a circuit creates an electric force field that makes it possible for the circuit to work
    12·1 answer
  • A technique in which people use machines to learn how to control their bodies is known as __________.
    11·2 answers
  • If you are measuring how far a ball traveled in an experiment which example below could be an
    9·1 answer
  • A 66​-foot-tall woman walks at 55 ​ft/s toward a street light that is 2424 ft above the ground. What is the rate of change of th
    11·1 answer
  • Using the law of conservation of energy, what will be the KE of an arrow having a PE of 65J after it is shot from a bow?
    6·1 answer
  • Conductors have ___<br> resistance.
    11·1 answer
  • Charges of 7.2nC and 6.7nC are 32 cm apart. Find the equilibrium position for a -3.0nC charge.
    12·1 answer
  • A motor has a rotor (with armature) of moment of inertia ????m . The rotor is attached to a gear box of gear ratio G &gt; 1. The
    14·1 answer
  • A box with a mass of 50 kg is raised straight up. What is the force of the box?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!