Answer:
Answer:
Bus travels 160 km in 4 hours
Speed of bus = 160/4 = 40 km/hr
Train travels 320 km in 5 hours
Speed of train = 320/5 = 64 km/hr
In one hour, bus travels 40 km and train travels 64 km.
Ratio = 40:64 = 5:8
<h2>Answer:</h2><h2> b hopefully this helps you with work </h2>
Answer:

Explanation:
Rydberg formula is used to calculate the wavelengths of the spectral lines of many chemical elements. For the hydrogen, is defined as:

Where
is the Rydberg constant for hydrogen and
,
are the lower energy state and the higher energy state, respectively.

My response to question (a) and (b) is that all of the element of the rope need to aid or support the weight of the rope and as such, the tension will tend to increase along with height.
Note that It increases linearly, if the rope is one that do not stretch. So, the wave speed v= √ T/μ increases with height.
<h3>How does tension affect the speed of a wave in a rope?</h3>
The Increase of the tension placed on a string is one that tends to increases the speed of a wave, which in turn also increases the frequency of any given length.
Therefore, My response to question (a) and (b) is that all of the element of the rope need to aid or support the weight of the rope and as such, the tension will tend to increase along with height. Note that It increases linearly, if the rope is one that do not stretch. So, the wave speed v= √ T/μ increases with height.
Learn more about tension from
brainly.com/question/2008782
#SPJ4
See full question below
(a) If a long rope is hung from a ceiling and waves are sent up the rope from its lower end, why does the speed of the waves change as they ascend? (b) Does the speed of the ascending waves increase or decrease? Explain.
Answer:
D) directly, inversely
Explanation:
The energy of a photon of light is directly proportional to its frequency and inversely proportional to its wavelength.
Frequency is the number of waves that passes through a point per unit of time.
Wavelength is the is the distance between successive crests or troughs on a wave.
Mathematically, frequency is related to wavelength and velocity using;
Energy = h x f
where h is the Planck's constant
f is the frequency
Since c = f ∧
where f is the frequency of the wave
∧ is the wavelength of the wave
c is the speed of light
So;
f = c/∧
Therefore;
E = 
From the equation, we see an inverse relationship between E and wavelength and a direct one with frequency.