I'm going to assume that this gripping drama takes place on planet Earth, where the acceleration of gravity is 9.8 m/s². The solutions would be completely different if the same scenario were to play out in other places.
A ball is thrown upward with a speed of 40 m/s. Gravity decreases its upward speed (increases its downward speed) by 9.8 m/s every second.
So, the ball reaches its highest point after (40 m/s)/(9.8 m/s²) = <em>4.08 seconds</em>. At that point, it runs out of upward gas, and begins falling.
Just like so many other aspects of life, the downward fall is an exact "mirror image" of the upward trip. After another 4.08 seconds, the ball has returned to the height of the hand which flung it. In total, the ball is in the air for <em>8.16 seconds</em> up and down.
Answer:
a = 3.27 m/s²
v = 2.56 m/s
Explanation:
given,
mass A = 1 kg
mass B = 2 kg
vertical distance between them = 1 m










a = 3.27 m/s²
The speed of the system at that moment is:
v² = u² + 2×a×s
v² = 0² + 2× 3.27 × 1
v ² = 6.54
v = 2.56 m/s
Wavelength = speed / frequency
(345 m/s) / (20,000 Hz) = 0.017 m
Complete Question:
Two 3.0µC charges lie on the x-axis, one at the origin and the other at 2.0m. A third point is located at 6.0m. What is the potential at this third point relative to infinity? (The value of k is 9.0*10^9 N.m^2/C^2)
Answer:
The potential due to these charges is 11250 V
Explanation:
Potential V is given as;

where;
K is coulomb's constant = 9x10⁹ N.m²/C²
r is the distance of the charge
q is the magnitude of the charge
The first charge located at the origin, is 6.0 m from the third charge; the potential at this point is:

The second charge located at 2.0 m, is 4.0 m from the third charge; the potential at this point is:

Total potential due to this charges = 4500 V + 6750 V = 11250 V
Answer:
As we have already discussed earlier, motion is the state of change in position of an object over time. It is described in terms of displacement, distance, velocity, acceleration, time and speed. Jogging, driving a car, and even simply taking a walk are all everyday examples of motion. The relations between these quantities are known as the equations of motion.