Discrete systems are those systems in which are made up of finite component particles a which are non-homogeneously arranged such that no smooth variation exists. It is such that all constituent particles have properties which vary randomly. They are direct opposite to continuous systems, which are smooth arrangement of particles which cannot be individually taken into consideration.
Was this answer helpful
Answer:
r = 4.24x10⁴ km.
Explanation:
To find the radius of such an orbit we need to use Kepler's third law:

<em>where T₁: is the orbital period of the geosynchronous Earth satellite = 1 d, T₂: is the orbital period of the moon = 0.07481 y, r₁: is the radius of such an orbit and r₂: is the orbital radius of the moon = 3.84x10⁵ km. </em>
From equation (1), r₁ is:
Therefore, the radius of such an orbit is 4.24x10⁴ km.
I hope it helps you!
Answer:
- Decreasing the resistance
- Using a shorter length
- Using a smaller area wire
Explanation:
Formula for conductance in wires is;
G = 1/R
Where;
G is conductance
R is resistance
This means that increasing the resistance leads to a larger denominator and thus a smaller conductance but to decrease the denominator means larger conductance.
Thus, to increase the conductance, we have to decrease the resistance.
Resistance here has a formula of;
R = ρL/A
Where;
ρ is resistivity
L is length of wire
A is area
Thus, to decrease the resistance, we will have to use a shorter length and smaller area of wire.
Yes, they seem right to me.
Explanation:
Resonance: Resonance is the phenomenon which occurs when the applied frequency on the object is equal to its natural frequency.
In the given problem, the singing of an opera singer caused a drinking glass to shatter.
This occurs due to the phenomenon resonance. The applied frequency of the singing of an opera singer on the drinking glass matches with the natural frequency of the drinking glass. It causes a glass to shatter.