Alot as far as i know unless you need it in formal terms.
Answer:
35870474.30504 m
Explanation:
r = Distance from the surface
T = Time period = 24 h
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
m = Mass of the Earth = 5.98 × 10²⁴ kg
Radius of Earth =
The gravitational force will balance the centripetal force
From Kepler's law we have relation
Distance from the center of the Earth would be
Answer: The height above the release point is 2.96 meters.
Explanation:
The acceleration of the ball is the gravitational acceleration in the y axis.
A = (0, -9.8m/s^)
For the velocity we can integrate over time and get:
V(t) = (9.20m/s*cos(69°), -9.8m/s^2*t + 9.20m/s^2*sin(69°))
for the position we can integrate it again over time, but this time we do not have any integration constant because the initial position of the ball will be (0,0)
P(t) = (9.20*cos(69°)*t, -4.9m/s^2*t^2 + 9.20m/s^2*sin(69°)*t)
now, the time at wich the horizontal displacement is 4.22 m will be:
4.22m = 9.20*cos(69°)*t
t = (4.22/ 9.20*cos(69°)) = 1.28s
Now we evaluate the y-position in this time:
h = -4.9m/s^2*(1.28s)^2 + 9.20m/s^2*sin(69°)*1.28s = 2.96m
The height above the release point is 2.96 meters.
Answer:
I = Δq / t
Explanation:
The quantity of electricity i.e charge is related to current and time according to the equation equation:
Q = It
Δq = It
Where:
Q => is the quantity of electricity i.e charge
I => is the current.
t => is the time.
Thus, we can rearrange the above expression to make 'I' the subject. This is illustrated below:
Δq = It
Divide both side by t
I = Δq / t