Answer:
A. The bomb will take <em>17.5 seconds </em>to hit the ground
B. The bomb will land <em>12040 meters </em>on the ground ahead from where they released it
Explanation:
Maverick and Goose are flying at an initial height of
, and their speed is v=688 m/s
When they release the bomb, it will initially have the same height and speed as the plane. Then it will describe a free fall horizontal movement
The equation for the height y with respect to ground in a horizontal movement (no friction) is
[1]
With g equal to the acceleration of gravity of our planet and t the time measured with respect to the moment the bomb was released
The height will be zero when the bomb lands on ground, so if we set y=0 we can find the flight time
The range (horizontal displacement) of the bomb x is
[2]
Since the bomb won't have any friction, its horizontal component of the speed won't change. We need to find t from the equation [1] and replace it in equation [2]:
Setting y=0 and isolating t we get

Since we have 


Replacing in [2]


A. The bomb will take 17.5 seconds to hit the ground
B. The bomb will land 12040 meters on the ground ahead from where they released it
1.Life science involves fields of discipline catering to living organisms such as we humans while physical science caters to non-living organisms.
2.Life science has more fields of discipline than physical science.
3.Physical science relies on laws and theories to explain concepts while life science relies on biological explanations and can also rely on theories.
I guess it’s B cause that maybe is the output
Answer:
10581.59 V
Explanation:
We are given that
Magnetic field=B=0.65 T
Speed of electron=
Charge on electron, 
Mass of electron,
We have to find the potential difference in volts required in the first part of the experiment to accelerate electrons.

Where V=Potential difference
Mass of electron
v=Velocity of electron
Using the formula


Hence, the potential difference=10581.59 V