<span>A. Exact ecological footprints are often difficult to calculate, but estimates can be useful in comparing populations.
</span>Which of the following could be said about ecological footprints? <u /> <u>Exact ecological footprints are often difficult to calculate, but estimates can be useful in comparing populations.</u><u />
NOT:
b. Ecological footprints can't be used to determine carrying capacity.
C. Ecological footprints don't take into account resources needed to absorb and manage wastes.
<span>D. The average ecological footprints for various countries are nearly identical.</span>
The correct answer is - A) The major constituents of air are gaseous elements.
With the statement ''the major constituents of air are gaseous elements'' we can easily conclude that the air is a mixture. The reason for that is that we have a plural usage of the word element, elements, which mean that there are multiple elements that make up the air.
The air is indeed predominantly a mixture of gaseous elements. The most abundant gas in the air being the nitrogen with 78.9%, oxygen with 20.95%, argon 0.93%, and carbon dioxide 0.04%, with lesser amounts of other gases also be present in it. The water vapor is also present in the air, though it is variable, being around 1% at sea level, but only 0.4% over the entire atmosphere.
Answer:
New cells arise from existing cells.
Explanation:
According to the cell theory, "all living things are composed of one or more cells; the cell is the basic unit of life; and new cells arise from existing cells"(Lumen Learning).
Cells are the basic unit of life. Some organisms consists of only one cell while other organisms have many cells and are called multicellular organisms.
In multicellular organisms, new cells are formed by the division of preexisting cells.
Answer:
Ability to be bent = Malleability
Identity = Physical Change
Electrical Current = Conductivity
Dissolve = Solubility
Color, Phase, or Hardness = Physical Property
Answer:
By sharing their valence electrons, both hydrogen atoms now have two electrons in their respective valence shells. Because each valence shell is now filled, this arrangement is more stable than when the two atoms are separate.
Explanation: