Answer:
Diffusion occurs in solid and liquid through the constant and random motion of the smaller particles called molecules of either solid, liquid or gaseous in permeable medium as witnessed in the experiment.
Explanation:
The kinectic molecular theory of matter states that the smaller particles of matters called molecules are in constant, but random motion and the degree of movement of the molecules depends on the state or phase such matter exist, which is a derivative of the total kinetic energy possessed by the molecules. This average kinetic energy of the molecules as iodine for example is proportional to the temperature of the matter.
Diffusion should be remembered as the movement of molecules of matters from a highly concentrated region otherwise called hypertonic region to a less concentrated region called hypotonic region through a permeable medium until there is an equilibrium in the system. Since diffusion is expected to involve the movement of molecules, and any matter that can exhibit diffusion is said to have moving molecules, therefore, the kinetic molecular theory of matter is proven to be accurate with the observed movement of iodine molecules in the test tube. This shows that even the molecules of solid matters are in constant random motion, this is made more convincing when these molecules migrate without the addition of external energy source like heat, which then help to understand that the natural iodine molecules are in constant random motion, as they are changed to gaseous state without passing through liquid state, a phenomenon called sublimation.
It is a weighted average of the atomic masses of the naturally occurring isotopes of the element.
That statement is true.
Reason: If you are familiar with the cell theory, the cell theory states 3 things:
- All living things are made up of cells
- Cells are the basic unit of life
- Cell comes from other cells
Any living things are made up of cells- which is why cells are considered the building blocks of life on Earth.
Hope this helps!! :)
The temperature at which phase changes occur is highly dependent on the electrostatic forces between the molecules in the substance.
The forces that hold molecules together are called intermolecular forces. These intermolecular forces affect the temperature at which phase changes occur. The statement about phase changes and electrostatic forces that is correct is that; "the temperatures at which a substance changes phases indicate the relative strength of the forces between molecules in the substance."
There are three states of matter, solid liquid and gas. The order of intermolecular forces in all the states of matter are not the same. The order of strongest collective electrostatic forces to weakest collective electrostatic forces is; solid, liquid, gas.
When water boils, the forces between water molecules break, and the bonds between the atoms in water are unchanged.
When a sample of calcium carbonate is cooled, the forces strengthen, and the molecule structure becomes more rigid.
If the boiling point of acetone is lower than the boiling point of ethanol, then, the intermolecular forces in ethanol are stronger than the intermolecular forces in acetone.
Learn more about phase changes: brainly.com/question/671212