Answer:
I think the answer is C. protons are positively charged are one of the heaviest subatomic particles.
Explanation:
Electrons are negatively charged which is the basic unit of an electric charge
mass of the electron is 9.10938356 × 10−31 kg, which is only 1/1,836the mass of a proton.
They have a magnetic attraction.
The equation of state for a hypothetical ideal gas is known as the ideal gas law, sometimes known as the general gas equation. i.e. PV = nRT or P1V1 = P2V2.
- According to the ideal gas law, the sum of the absolute temperature of the gas and the universal gas constant is equal to the product of the pressure and volume of one gram of an ideal gas.
- Robert Boyle, Gay-Lussac, and Amedeo Avogadro's observational work served as the basis for the ideal gas law. The Ideal gas equation, which simultaneously describes every relationship, is obtained by combining all of their observations into a single statement.
- When applying the gas constant R = 0.082 L.atm/K.mol, pressure, volume, and temperature should all be expressed in units of atmospheres (atm), litres (L), and kelvin (K).
- At high pressure and low temperature, the ideal gas law basically fails because molecule size and intermolecular forces are no longer negligible but rather become significant considerations.
Learn more about ideal gas law here:
brainly.com/question/26040104
#SPJ9
Explanation:
The ice melting would make more water because ice is water and if it melts it make water.
hope this helps :)
Answer:
The mass percentage of calcium carbonated reacted is 2.5%.
Explanation:
The reaction is:

Thus the Kp of the equilibrium will be:
Kp = partial pressure of carbon dioxide [as the other are solid]
Moles of calcium carbonate initially present = 
Let us apply ICE table to the equilibrium given:

Initial 0.2 0 0
Change -x +x +x
Equilibrium 0.2-x x x
Kp = partial pressure of carbon dioxide
Kp = Kc(RT)ⁿ
where n = difference in the number of moles of gaseous products and reactants
for given reaction n = 1
R = gas constant = 8.314 J /mol K
T = temperature = 800 ⁰C = 1073 K
Putting values
Kc =
Kc = ![\frac{[CO_{2}][CaO]}{[CaCO_{3}]}= \frac{x^{2} }{(0.2-x)}=1.3X10^{-4}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCO_%7B2%7D%5D%5BCaO%5D%7D%7B%5BCaCO_%7B3%7D%5D%7D%3D%20%5Cfrac%7Bx%5E%7B2%7D%20%7D%7B%280.2-x%29%7D%3D1.3X10%5E%7B-4%7D)


On calculating
x = 0.005
where x = the moles of calcium carbonate dissociated or reacted.
Percentage of the moles or mass reacted =
%