Answer : The correct option is, (C) 17 m/s
Explanation :
Formula used :

where,
K.E = kinetic energy = 6.8 J
m = mass of object = 46 g = 0.046 kg (1 kg = 1000 g)
v = velocity
Now put all the given values in the above formula, we get:




Therefore, the ball's velocity be as it leaves the cannon is, 17 m/s
Answer:
3.46 A
Explanation:
The force (F) exerted on a wire of a particular length (L) carrying current (I) through a magnetic field (B) at an angle (θ) to the magnetic field is given as
F = (B)(I)(L) sin θ
F = 3.13 N
B = 0.360 T
I = ?
L = 2.50 m
θ = 79°
3.13 = (0.360 × I × 2.5 × sin 79°)
0.8835 I = 3.13
I = 3.54 A
But this is the resultant current in this magnetic field.
Since the two wires are conducting current in opposite directions,
Resultant current = 7 - (current in the other wire)
Current in the other wire = 7 - 3.54 = 3.46 A
It depends on Mass and velocity