1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PIT_PIT [208]
3 years ago
14

Give an example of a negative slope.

Physics
2 answers:
kolbaska11 [484]3 years ago
7 0
A line has negative slope if it slopes downward from left to right on a graph.
Alla [95]3 years ago
3 0
Y= -6x + 2
the addition at the end isn't necessary unless a y-intercept is required in the equation
You might be interested in
The Drude model uses Newton’s laws, which say that an electron in a constant electric field should experience constant accelerat
Troyanec [42]

Answer:

Electrons are influenced by internal forces.

-On the temperature, density of electrons per unit of volume and relaxation time.

-The temperature

Explanation:

The Drude model neglects interactions between electrons and ions and with themselves. Those interactions (by which we refer as electromagnetic forces) influence in the random movement and freedom of the electron. So, they could be more restricted or could influence in conductivity more.

The deduction of the resistivity comes from the Ohm's law, which states that the Electric field in the material is proportional to the current density of electrons by a constant, which is the resistivity itself. The equation goes as follows:

\rho=\frac{m_e}{e^2n_e \tau }

Where e refers to electron (or the charge of it), τ is the relaxation time (average time between collisions), m is the mass and n is the density of charges (electrons in this case) per volume. However, experimentally resistivity is also dependent on temperature, which actually influence the relaxation time. The thermal energy influence in the behavior of the electrons, making them collide with phonons, have more randomness and reduced mean free path.

6 0
3 years ago
An electron moving to the left at 0.8c collides with a photon moving to the right. After the collision, the electron is moving t
SVETLANKA909090 [29]

Answer:

Wavelength = 2.91 x 10⁻¹² m, Energy = 6.8 x 10⁻¹⁴

Explanation:

In order to show that a free electron can’t completely absorb a photon, the equation for relativistic energy and momentum will be needed, along the equation for the energy and momentum of a photon. The conservation of energy and momentum will also be used.

E = y(u) mc²

Here c is the speed of light in vacuum and y(u) is the Lorentz factor

y(u) = 1/√[1-(u/c)²], where u is the velocity of the particle

The relativistic momentum p of an object of mass m and velocity u is given by

p = y(u)mu

Here y(u) being the Lorentz factor

The energy E of a photon of wavelength λ is

E = hc/λ, where h is the Planck’s constant 6.6 x 10⁻³⁴ J.s and c being the speed of light in vacuum 3 x 108m/s

The momentum p of a photon of wavelenght λ is,

P = h/λ

If the electron is moving, it will start the interaction with some momentum and energy already. Momentum of the electron and photon in the initial and final state is

p(pi) + p(ei) = p(pf) + p(ef), equation 1, where p refers to momentum and the e and p in the brackets refer to proton and electron respectively

The momentum of the photon in the initial state is,

p(pi) = h/λ(i)

The momentum of the electron in the initial state is,

p(ei) = y(i)mu(i)

The momentum of the electron in the final state is

p(ef) = y(f)mu(f)

Since the electron starts off going in the negative direction, that momentum will be negative, along with the photon’s momentum after the collision

Rearranging the equation 1 , we get

p(pi) – p(ei) = -p(pf) +p(ef)

Substitute h/λ(i) for p(pi) , h/λ(f) for p(pf) , y(i)mu(i) for p(ei), y(f)mu(f) for p(ef) in the equation 1 and solve

h/λ(i) – y(i)mu(i) = -h/λ(f) – y(f)mu(f), equation 2

Next write out the energy conservation equation and expand it

E(pi) + E(ei) = E(pf) + E(ei)

Kinetic energy of the electron and photon in the initial state is

E(p) + E(ei) = E(ef), equation 3

The energy of the electron in the initial state is

E(pi) = hc/λ(i)

The energy of the electron in the final state is

E(pf) = hc/λ(f)

Energy of the photon in the initial state is

E(ei) = y(i)mc2, where y(i) is the frequency of the photon int the initial state

Energy of the electron in the final state is

E(ef) = y(f)mc2

Substitute hc/λ(i) for E(pi), hc/λ(f) for E(pf), y(i)mc² for E(ei) and y(f)mc² for E(ef) in equation 3

Hc/λ(i) + y(i)mc² = hc/λ(f) + y(f)mc², equation 4

Solve the equation for h/λ(f)

h/λ(i) + y(i)mc = h/λ(f) + y(f)mc

h/λ(f) = h/lmda(i) + (y(i) – y(f)c)m

Substitute h/λ(i) + (y(i) – y(f)c)m for h/λ(f)  in equation 2 and solve

h/λ(i) -y(i)mu(i) = -h/λ(f) + y(f)mu(f)

h/λ(i) -y(i)mu(i) = -h/λ(i) + (y(f) – y(i))mc + y(f)mu(f)

Rearrange to get all λ(i) terms on one side, we get

2h/λ(i) = m[y(i)u(i) +y(f)u(f) + (y(f) – y(i)c)]

λ(i) = 2h/[m{y(i)u(i) + y(f)u(f) + (y(f) – y(i))c}]

λ(i) = 2h/[m.c{y(i)(u(i)/c) + y(f)(u(f)/c) + (y(f) – y(i))}]

Calculate the Lorentz factor using u(i) = 0.8c for y(i) and u(i) = 0.6c for y(f)

y(i) = 1/[√[1 – (0.8c/c)²] = 5/3

y(f) = 1/√[1 – (0.6c/c)²] = 1.25

Substitute 6.63 x 10⁻³⁴ J.s for h, 0.511eV/c2 = 9.11 x 10⁻³¹ kg for m, 5/3 for y(i), 0.8c for u(i), 1.25 for y(f), 0.6c for u(f), and 3 x 10⁸ m/s for c in the equation derived for λ(i)

λ(i) = 2h/[m.c{y(i)(u(i)/c) + y(f)(u(f)/c) + (y(f) – y(i))}]

λ(i) = 2(6.63 x 10-34)/[(9.11 x 10-31)(3 x 108){(5/3)(0.8) + (1.25)(0.6) + ((1.25) – (5/3))}]

λ(i) = 2.91 x 10⁻¹² m

So, the initial wavelength of the photon was 2.91 x 10-12 m

Energy of the incoming photon is

E(pi) = hc/λ(i)

E(pi) = (6.63 x 10⁻³⁴)(3 x 10⁸)/(2.911 x 10⁻¹²) = 6.833 x 10⁻¹⁴ = 6.8 x 10⁻¹⁴

So the energy of the photon is 6.8 x 10⁻¹⁴ J

6 0
3 years ago
A certain resistance thermometer read 14.5 ohms in pure melting ice and 18.5 ohms in steam at standard atmospheric pressure what
Vadim26 [7]

The resistance of the thermometer at room temperature is 15.04 ohms.

<h3 />

<h3>What is a resistance thermometer?</h3>

A resistance thermometer is a type of thermometer that measures temperature through a change in resistance.

To calculate the resistance of the thermometer at room temperature, we use the formula below.

Formula:

  • 100/27 = 2/(x-14.5)..............Eqquation 1

Where:

  • x = Resistance of the thermometer at room temperature

Make x the subject of the equation

  • x = [(27×2)/100]+14.5
  • x = (54/100)+14.5
  • x = 0.54+14.5
  • x = 15.04 ohms.

Hence, The resistance of the thermometer at room temperature is 15.04 ohms.

Learn more about thermometers here: brainly.com/question/1531442

3 0
2 years ago
What type of machine is wire cutter pliers?
Sonja [21]
It seems that you have missed the necessary options for us to answer this question, but anyway, here is the answer. The type of machine that a wire cutter pliers is classified is a simple machine. When we say simple machine, this is the type of machine that is considered basic wherein you need to apply force for it to function. Hope this helps.
3 0
3 years ago
Read 2 more answers
If a kestrel eats a mouse that eats grass the kestrel is a
vovangra [49]
<span> Second-level consumer </span>
5 0
3 years ago
Read 2 more answers
Other questions:
  • Which phrases describe all the outer planets’ motion? Check all that apply.
    7·2 answers
  • A train is approaching a signal tower at a speed of 40m/s. The train engineer sounds the 1000-Hz whistle, while a switchman in t
    11·1 answer
  • HELPPPPPURGENT PLEASE NB 35
    15·1 answer
  • A magnetic field is created by ____.
    6·1 answer
  • free p-o-i-n-t-s if you done the last one dont do this one dont do this one yet ill tell you when you can do it bc im trying to
    14·1 answer
  • If you had to be an animal, which would you be and why?​
    6·1 answer
  • Two blocks are connected as shown in the diagram below. Assume that the ramp is frictionless. Draw the force diagram for the blo
    12·1 answer
  • How much electricity is used to boil 600 g of water if the kettle has a power of 1500 W? The water boiled for 3 minutes and 9 se
    13·1 answer
  • Which of the following is the best hypothesis
    5·1 answer
  • The weight lifter used a force of 980 N to raise the barbell over her head in 5.21 seconds. Approximately how much work did she
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!