Answer:
9] V = D ÷ T
Take any distance value from the graph and its relevant time.
V = 4 ÷ 2
V = 2 m/s
[You will notice that any distance values with its time will give you 2 m/s as its speed. This means that speed is constant throughout.]
10] Take the distance value and its time for the highest peak of B.
V = 20 ÷ 2
V = 10 m/s
Answer:
a) Diffusion coefficient, D = 1.5 in/hr
b) Mean jump frequency, f = 0.0833 Hz
Explanation:
a) The relationship between the diffusion coefficient, time and mean displacement and can be given by the expression:
..........(1)
Where <r> = mean displacement
D = Diffusion coefficient
t = time = 12 hrs
sum of the squares of the distance divided by 100 is 36 in2.
<r>²= 36 in²
Substituting these values into equation (1) above

b) Mean jumping distance, <r> = 0.1 inches
Applying equation (1) again
Where D = 1.5 in/hr


The mean jump frequency, f = 1/t
f = 1/12
f = 0.0833 Hz
Kepler's first law - sometimes referred to as the law of ellipses - explains that planets are orbiting the sun in a path described as an ellipse. ... The resulting shape will be an ellipse. An ellipse is a special curve in which the sum of the distances from every point on the curve to two other points is a constan