1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
solniwko [45]
3 years ago
12

A 100-kg running back runs at 5 m/s into a stationary linebacker. It takes 0.5 s for the running back to be completely stopped.

Find the magnitude of force exerted on the running back during the collision.
Physics
2 answers:
Elza [17]3 years ago
6 0

Answer:

1000 N

Explanation:

First, we need to find the deceleration of the running back, which is given by:

a=\frac{v-u}{t}

where

v = 0 is his final velocity

u = 5 m/s is his initial velocity

t = 0.5 s is the time taken

Substituting, we have

a=\frac{0-5 m/s}{0.5 s}=-10 m/s^2

And now we can calculate the force exerted on the running back, by using Newton's second law:

F=ma=(100 kg)(-10 m/s^2)=-1000 N

so, the magnitude of the force is 1000 N.

Ede4ka [16]3 years ago
5 0
The answer is 1600N by adding all the numbers up.

Hope this helps.
You might be interested in
An unstable particle is created in the upper atmosphere from a cosmic ray and travels straight down toward the surface of the ea
german

Answer:

Q1)  Time taking by particle to travel the 40 km wrt. earth = 1.34\times10^{-6} sec.

Q2) The distance traveled by particle where the particle created to surface of earth wrt. particle's frame = 3.84 km.

Q3) The time taking by particle to travel from where it is created to the surface of the earth = 1.285\times10^{-5} sec.

Explanation:

Given :

Speed of particle wrt. earth v=0.99537c

Distance between where particle is created and earth surface = 40 km

we know that,

⇒       v = \frac{x}{t}

Where x = 40\times10^{3} m, v = 0.99537c, we know speed of light c = 3 \times10^{8}

∴      t = \frac{x}{v}

         = \frac{40 \times10^{3} }{0.99537\times3\times10^{8} }

      t = 1.34\times10^{-6} sec

∴ Thus, time taking by particle to travel the 40 km wrt. earth t = 1.34\times10^{-6} sec

According to the lorentz transformation,

⇒    l = l_{o} \sqrt{1-\frac{v^2}{c^2} }

Where l = improper length, l_{o} =proper length (distance measured wrt. rest frame) = 40 km

     l = 40 \sqrt{1-\frac{v^2}{c^2 }

     l = 40 \times 0.096

     l = 3.84 km

∴ Thus, the distance traveled by particle where the particle created to surface of earth wrt. particle's frame = 3.84 km.

According to the time dilation,

   \Delta t = \frac{\Delta t_{o} }{\sqrt{1-\frac{v^2}{c^2} } }

Where \Delta t = improper time (wrt. earth frame time) =1.34\times10^{-6} sec ,  \Delta t _{o} = proper time (wrt. particle frame).

 1.34\times10^{-6} = \frac{ \Delta t_{o}}{0.096}

 \Delta t_{o} = 1.285 \times10^{-5} sec

Thus, the time taking by particle to travel from where it is created to the surface of the earth = 1.285 \times10^{-5} sec.

6 0
3 years ago
Two sheets of polarizing material are placed such that their polarizing axes are 90° to each other and no light passes through t
nekit [7.7K]

Answer:

Explanation:

Polarization In this case angle of incidence is not equal to angle of polarization, hence reflected light is partially polarized and transmitted light is also partially polarized.  by reflection is explained by Brewster's law,  

According to this when unpolarized light incident on glass plate at an angle is called as angle of polarizing the reflected light is plane polarized, and transmitted light is partially polarized. The plane of vibration of polarized light is having plane of vibrations perpendicular to plane of incidence.

4 0
3 years ago
A coil with an inductance of 2.3 H and a resistance of 14 Ω is suddenly connected to an ideal battery with ε = 100 V. At 0.13 s
klemol [59]

Given Information:

Resistance = R = 14 Ω

Inductance = L = 2.3 H

voltage = V = 100 V

time = t = 0.13 s

Required Information:

(a) energy is being stored in the magnetic field

(b) thermal energy is appearing in the resistance

(c) energy is being delivered by the battery?

Answer:

(a) energy is being stored in the magnetic field ≈ 219 watts

(b) thermal energy is appearing in the resistance ≈ 267 watts

(c) energy is being delivered by the battery ≈ 481 watts

Explanation:

The energy stored in the inductor is given by

U = \frac{1}{2} Li^{2}

The rate at which the energy is being stored in the inductor is given by

\frac{dU}{dt} = Li\frac{di}{dt} \: \: \: \: eq. 1

The current through the RL circuit is given by

i = \frac{V}{R} (1-e^{-\frac{t}{ \tau} })

Where τ is the the time constant and is given by

\tau = \frac{L}{R}\\ \tau = \frac{2.3}{14}\\ \tau = 0.16

i = \frac{110}{14} (1-e^{-\frac{t}{ 0.16} })\\i = 7.86(1-e^{-6.25t})\\\frac{di}{dt} = 49.125e^{-6.25t}

Therefore, eq. 1 becomes

\frac{dU}{dt} = (2.3)(7.86(1-e^{-6.25t}))(49.125e^{-6.25t})

At t = 0.13 seconds

\frac{dU}{dt} = (2.3) (4.37) (21.8)\\\frac{dU}{dt} = 219.11 \: watts

(b) thermal energy is appearing in the resistance

The thermal energy is given by

P = i^{2}R\\P = (7.86(1-e^{-6.25t}))^{2} \cdot 14\\P = (4.37)^{2}\cdot 14\\P = 267.35 \: watts

(c) energy is being delivered by the battery?

The energy delivered by battery is

P = Vi\\P = 110\cdot 4.37\\P = 481 \: watts

4 0
3 years ago
A hockey puck is hit on a frozen lake and starts moving with a speed of 13.60 m/s. Exactly 6.2 s later, its speed is 7.20 m/s. (
stellarik [79]

Answer:

-1.03 m/s²

Explanation:

Acceleration: This can be defined as the rate of change of velocity. The S. I unit of acceleration is m/s².

Mathematically, acceleration is expressed as

a = (v-u)/t ........................ Equation 1

Where a = acceleration, v = final velocity, u = initial velocity, t  = time.

Given: u = 13.60 m/s, v = 7.20 m/s t = 6.2 s.

Substituting into equation 2

a = (7.20-13.60)/6.2

a = -6.4/6.2

a = -1.03 m/s²

Note: a is negative because, the hockey puck is decelerating.

Hence the average acceleration = -1.03 m/s²

3 0
3 years ago
If you wanted to
VLD [36.1K]

Answer:

Option C

Explanation:

According to the formula

  • \\ \boxed{\sf R=\rho\dfrac{\ell}{A}}

So

If we use wide wire we increase the area of cross section so resistance decreases

5 0
2 years ago
Other questions:
  • Light of intensity 2.00 W/m2 passes through the pupil of one of your eyes and eventually falls on your retina. The radius of the
    5·1 answer
  • Where might you see a light wave with a large amplitude? Why?
    5·2 answers
  • Which three elements have strong magnetic properties?
    11·2 answers
  • Describe two ways in which heat is transported in the biosphere
    6·1 answer
  • A zinc atom loses 3electron to become a zinc oin
    15·1 answer
  • Two protons are 0.00500 m apart. Find the force between them.
    8·1 answer
  • E4.Suppose Galileo’s pulse rate was 75 beats per minute. How many beats per second is this? What is the time in seconds between
    7·1 answer
  • What causes an atom to be neutral? Equal number of protons and neutrons Equal distance between the nucleus and electrons Equal n
    10·1 answer
  • (a) A 15.0 kg block is released from rest at point A in the figure below. The track is frictionless except for the portion betwe
    12·1 answer
  • A tractor pushes a log with a force of 6,000 N, if it is able to move it with an acceleration of 10m / s², how much mass does th
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!