Answer:
k = 49 N/m
Explanation:
Given that,
Mass, m = 250 g = 0.25 kg
When the mass is attached to the end of the spring, it elongates 5 cm or 0.05 m. We need to find the spring constant. Let it is k.
The force due to mass is balanced by its weight as follows :
mg=kx

So, the spring constant of the spring is 49 N/m.
Answer:
H = 45 m
Explanation:
First we find the launch velocity of the ball by using the following formula:
v₀ = √(v₀ₓ² + v₀y²)
where,
v₀ = launching velocity = ?
v₀ₓ = Horizontal Component of Launch Velocity = 15 m/s
v₀y = Vertical Component of Launch Velocity = 30 m/s
Therefore,
v₀ = √[(15 m/s)² + (30 m/s)²]
v₀ = 33.54 m/s
Now, we find the launch angle of the ball by using the following formula:
θ = tan⁻¹ (v₀y/v₀ₓ)
θ = tan⁻¹ (30/15)
θ = tan⁻¹ (2)
θ = 63.43°
Now, the maximum height attained by the ball is given by the formula:
H = (v₀² Sin² θ)/2g
H = (33.54 m/s)² (Sin² 63.43°)/2(10 m/s²)
<u>H = 45 m</u>
If an electron, a proton, and a deuteron move in a magnetic field with the same momentum perpendicularly, the ratio of the radii of their circular paths will be:
<h3>How is the ratio of the perpendicular parts obtained?</h3>
To obtain the ratio of the perpendicular parts, one begins bdy noting that the mass of the proton = 1m, the mass of deuteron = 2m, and the mass of the alpha particle = 4m.
The ratio of the radii of the parts can be obtained by finding the root of the masses and dividing this by the charge. When the coefficients are substituted into the formula, we will have:
r = √m/e : √2m/e : √4m/2e
When resolved, the resulting ratios will be:
1: √2 : 1
Learn more about the radii of their circular paths here:
brainly.com/question/16816166
#SPJ4
I think it may be c i learned about this last year
Answer:
Resistance, 
Explanation:
Given that,
Voltage of the battery, V = 9 volts
Current produced in the circuit, I = 17 A
We need to find the resistance when shorted by a wire of negligible resistance. It is a case of Ohm's law. The voltage is given by :




So, the resistance in the circuit is 0.529 ohms. Hence, this is the required solution.